首页 热点资讯 义务教育 高等教育 出国留学 考研考公

不定积分∫(0~π) x=2怎样计算?

发布网友 发布时间:11分钟前

我来回答

1个回答

热心网友 时间:6分钟前

结果为:2

解题过程如下:

原式=f'(x) = sinx/(π - x)

=∫(0~π) f(x) dx

= xf(x) - ∫(0~π) xf(x)' dx、

= πf(π) - ∫(0~π) x · sinx/(π - x) dx

= ∫(0~π) (πsinx - xsinx)/(π - x) dx

= ∫(0~π) (π - x)sinx/(π - x) dx

= ∫(0~π) sinx dx

= - (- 1 - 1)

= 2

扩展资料

求函数积分的方法:

设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分,记作,即∫f(x)dx=F(x)+C。

其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数不定积分的过程叫做对这个函数进行积分。

积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的实函数f(x),在区间[a,b]上的定积分。

若f(x)在[a,b]上恒为正,可以将定积分理解为在Oxy坐标平面上,由曲线(x,f(x))、直线x=a、x=b以及x轴围成的面积值(一种确定的实数值)。

积分公式:

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com