发布网友 发布时间:2022-04-26 17:42
共3个回答
热心网友 时间:2023-09-15 15:54
全数字调光系统原理
一、全数字调光系统原理
全数字调光系统的基本概念有:DMX512数字信号传输协议,数字触发器,数字调光台,数字信号解码处理器。
DMX512数字信号传输协议:以帧为单位,每帧数据由同步头和512个字节组成。按串行方式进行数据发送和接送,数据传输速率为 250KBit/秒。
正确理解DMX512协议及其电气特点是应用全数字调光系统的基础,DMX512信号的同步头告诉接收设备:后面有512个字节(byte)的串行数据发送过来,请做好接收准备工作。对于调光系统。每一个字节数据表示调光亮度值。用二位十六进制数表示(从OOH-FFH),其中OOH表示100%,第一个字节表示第一路亮度值。第二个字节表示第二路亮度值,……第512个字节表示第512路亮度值。对于电脑灯,这512个数据表示另外一种含义。电脑灯型号不同,其数据组合方式也不同。
DMX512信号的另外一个重要特性是信号差分输入工作模式。如果干扰信号同时加在正信号线和负信号线上,由于采用信号差分输入。输出端能滤除这个类干扰信号,有效地提高系统的抗干扰能力。
数字触发器:有二种工作方式,一为触发导通方式;一为触发关闭方式。触发关闭方式对电力系统的谐波干扰要比触发导通方式低。这是近年来国外研究出来的较为先进的触发方式
数字调光台:电脑处理系统通过输入接口将推杆信息(如分控杆、集控杆、总控杆等)。按键信息(如记录场、集控、效果等)收集起来进行处理。处理结果通过输出接口转化为DMX512信号分别输出到相应的DMX信号输出口上,同时在显示器上显示出相应内容。
数字信号解码处理器:将512个串行数据接收并存入计算机的RAM存储缓冲区中。在时序节拍的控制下,数字信号解码器中的计算机根据电网的同步信号及RAM存储缓冲的调光亮度度数据。输出触发脉冲控制晶闸管进行调光输出。
二、全数字调光系统的基本组成
虽然每一种全数字调光系统的设备型号和种类有所不同,但其基本组成都相差不大。主要由数字组调光台,数字信号解码处理器、数字传输、数字触发等部分组成。
灯光师根据剧本的内容设计好每一场景的光强、光比等灯光要素的变化节奏,在数字调光台上编好程序,演出时灯光师根据剧情进程逐一调出设计好的程序进行二度艺术创作。数字调光台输出DMX512信号到全数字调光器中进行调光输出,控制演出空间中灯具群的亮度变化。从而过到预期的灯光设计效果。
三、全数字调光系统的特点
数字调光台的基本特点:
数字调光台对演出空间中的灯光场景进行集中控制,为灯光师提供强有力的控制手段。
与模拟调光台相比,数字调光台具有以下基本特点:
1 存储记录:数字调光台使用RAM存储器或硬盘进行数据存储记录,为数据显示和数据处理提供坚实基础。
2 数据显示:数字调光台有二种显示方式,一种为液晶LCD和数码LED显示,另一种为CRT显示。
3 数据处理:数字调光台和的数据处理主要完成集控、场、效果、组、宏等的记录、编辑、运算等,以及将调光亮度数据转换为DMX512协议格式进行输出。
4 DMX信号输出:这是数字调光台最基本的特点,也是与模拟调光台最大的区别。
全数字调光器的基本特点:
与模拟调光器、半数字调光器相比,全数字调光器具有以下基本特点:
1 调光一致性好:全数字调光器无需任何调校即可达到良好的调光一致性,而且不随时间的变化和环境的变迁而变动。
2 调光精度高范围大:这是表征全数字调光技术的二个重要参量。在实际使用中也非常有用,如灯光设计中对演员面部表情进行刻画、布景和道具进行细腻调色。
3 调光曲线可选:全数字调光器一般都提供好几种调光曲线给用户挑选使用,常用的有线性,S型和过零触发。特别是过零触发,可以使用户非常方便地调整灯位安排。
4 可以场备份:现在国内大部分厂家只能做保持最后一场数据不变。但是这是远远不够的。在重要演出中,常常需要备份几场数据(如开幕、幕间、*、闭幕等)。
5 系统运行情况及重要参数报告:为使灯光师实时掌握调光设备的运行情况,必须将重要的运行数据(如空气开关、风机、硅块温度、三相平衡等)和参数(如负载电流、电压等)反馈给灯光师,这就是常说的REPORTING功能。
6 鲁棒性(Robust)强:所谓鲁棒性是指系统在外来干扰冲击下恢复原有性能的能力。这是使用数字电路、计算机技术和智能化技术带来的最明显的优势。
全数字系统与传统调光系统的区别:
从使用技术来看,全数字调光系统大量使用计算机技术、大规模集成电路、数据库技术、智能化技术、可靠性技术和各类抗干扰措施。
而传统调光系统由于使用运算放大器、分立无器件进行逻辑运算,受电源波动、电子无器件参数不一致性、温度飘移、湿度等诸多因素影响较大。
从使用效果来看,全数字调光系统能大大提高灯光师的工作效率,如全数字调光器不需要对出光点和调光范围进行调校可达到良好的调光一致性输出;此外,双控制器双电源质变备份、编辑功能、存储记录、掉电保护等功能都是非常有效的工作手段。
四、全数字调光系统的应用
全数字调光设备的选型:
选择全数字调光设备主要考虑这几个因素:使用场合;使用对象;经费预算。
大中型电视演播厅和舞台常使用固定型全数字调光硅柜和大回路数字调光台。固定型全数字调光硅柜主要规格有:60路、90路、96路,如国外厂家STRAND公司的CD80SV(96路);国内厂家河东企业的HDL-D96(96路),雄风6000Ⅱ型(60路),9000Ⅱ型(90路)。大回路数字调光台主要规格有:160路、240路,360路、480路,1000路,2000路等,如国外厂家STRAND公司的GSX125,LBX125,500i系列;国内厂家河东企业的HDL-1848(160路)2848(480路)。
小型电视演播厅常使用流动型全数字调光硅箱和小回路数字调光台。流动型全数字调光硅箱主要规格有:6路,12路,如河东企业的DDP6(6路),DDP12(12路)。小回路数字调光台主要规格有:12路、24路、36路等,如河东企业的SPLC12/36,24/72、36/108等。
举例说明全数字调乐系统的应用:
河北艺术中心:该中心主要以演马戏、杂技为主,同时兼顾其它文艺节目的演出,如大型歌舞、戏曲、小型体育比赛、各种会议等。剧场灯光系列设置了1000多调光回路,其中面光4道,左右耳光各3道,顶光6道,舞台逆光6道,此外还有流动光、柱光、脚光等。
该中心剧场采用全数字调光系统,全数字调光硅柜选用11台河东企业的HDL-D96,为方便专业文艺团体在演出大型歌舞、戏剧时根据自己的需要安排烟机,电脑灯,各类效果器和实时监系统的动行状态,配备了设置调光曲线功能(能过零触发)和远程诊断监控软件,并通过 Show Net网络将STRAND公司的550i、520i数字调光台联连起来构成网络调光系统。
热心网友 时间:2023-09-15 15:55
目前市场最新型的调光器 是蓝牙调光器
二、蓝牙调光器特点:
1. 机身小巧:长8cm、宽3.5cm、高2.5cm。
2. 环境适应性强:在干燥环境下,可在-10°C~45°C温度内进行工作。
3. 输出功率大:峰值切换电流可达30A。
4.调光亮度精准:精确数值1-100可调。
5.控制安全系数高:通过手机控制(无需下载APP),不需要接触设备。
6. 连接方便:打开手机蓝牙,扫码连接设备。
7. 多台设亮度同步:一台手机连接多台设备,勾选同步亮度,多台设备即可完成亮度同步。
热心网友 时间:2023-09-15 15:55
IGBT(Insulated Gate Bipolar Transistor),绝缘栅极型功率管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式电力电子器件。应用于交流电机、变频器、开关电源、照明电路、牵引传动等领域。
IGBT是强电流、高压应用和快速终端设备用垂直功率MOSFET的自然进化。由于实现一个较高的击穿电压BVDSS需要一个源漏通道,而这个通道却具有很高的电阻率,因而造成功率MOSFET具有RDS(on)数值高的特征,IGBT消除了现有功率MOSFET的这些主要缺点。虽然最新一代功率MOSFET器件大幅度改进了RDS(on)特性,但是在高电平时,功率导通损耗仍然要比IGBT 技术高出很多。较低的压降,转换成一个低VCE(sat)的能力,以及IGBT的结构,同一个标准双极器件相比,可支持更高电流密度,并简化IGBT驱动器的原理图。IGBT基本结构见图1中的纵剖面图及等效电路。
导通
IGBT硅片的结构与功率MOSFET 的结构十分相似,主要差异是IGBT增加了P+ 基片和一个N+ 缓冲层(NPT-非穿通-IGBT技术没有增加这个部分)。如等效电路图所示(图1),其中一个MOSFET驱动两个双极器件。基片的应用在管体的P+和N+ 区之间创建了一个J1结。
当正栅偏压使栅极下面反演P基区时,一个N沟道形成,同时出现一个电子流,并完全按照功率MOSFET的方式产生一股电流。如果这个电子流产生的电压在0.7V范围内,那么,J1将处于正向偏压,一些空穴注入N-区内,并调整阴阳极之间的电阻率,这种方式降低了功率导通的总损耗,并启动了第二个电荷流。最后的结果是,在半导体层次内临时出现两种不同的电流拓扑:一个电子流(MOSFET 电流); 空穴电流(双极)。
关断
当在栅极施加一个负偏压或栅压低于门限值时,沟道被禁止,没有空穴注入N-区内。在任何情况下,如果MOSFET电流在开关阶段迅速下降,集电极电流则逐渐降低,这是因为换向开始后,在N层内还存在少数的载流子(少子)。这种残余电流值(尾流)的降低,完全取决于关断时电荷的密度,而密度又与几种因素有关,如掺杂质的数量和拓扑,层次厚度和温度。少子的衰减使集电极电流具有特征尾流波形,集电极电流引起以下问题:功耗升高;交叉导通问题,特别是在使用续流二极管的设备上,问题更加明显。
鉴于尾流与少子的重组有关,尾流的电流值应与芯片的温度、IC 和VCE密切相关的空穴移动性有密切的关系。因此,根据所达到的温度,降低这种作用在终端设备设计上的电流的不理想效应是可行的,尾流特性与VCE、 IC和 TC之间的关系如图2所示。
反向阻断
当集电极被施加一个反向电压时, J1 就会受到反向偏压控制,耗尽层则会向N-区扩展。因过多地降低这个层面的厚度,将无法取得一个有效的阻断能力,所以,这个机制十分重要。另一方面,如果过大地增加这个区域尺寸,就会连续地提高压降。
第二点清楚地说明了NPT器件的压降比等效(IC 和速度相同) PT 器件的压降高的原因。
正向阻断
当栅极和发射极短接并在集电极端子施加一个正电压时,P/N J3结受反向电压控制。此时,仍然是由N漂移区中的耗尽层承受外部施加的电压。
闩锁
IGBT在集电极与发射极之间有一个寄生PNPN晶闸管,如图1所示。在特殊条件下,这种寄生器件会导通。这种现象会使集电极与发射极之间的电流量增加,对等效MOSFET的控制能力降低,通常还会引起器件击穿问题。晶闸管导通现象被称为IGBT闩锁,具体地说,这种缺陷的原因互不相同,与器件的状态有密切关系。通常情况下,静态和动态闩锁有如下主要区别:
当晶闸管全部导通时,静态闩锁出现。
只在关断时才会出现动态闩锁。这一特殊现象严重地*了安全操作区 。
为防止寄生NPN和PNP晶体管的有害现象,有必要采取以下措施:
防止NPN部分接通,分别改变布局和掺杂级别。
降低NPN和PNP晶体管的总电流增益。
此外,闩锁电流对PNP和NPN器件的电流增益有一定的影响,因此,它与结温的关系也非常密切;在结温和增益提高的情况下,P基区的电阻率会升高,破坏了整体特性。因此,器件制造商必须注意将集电极最大电流值与闩锁电流之间保持一定的比例,通常比例为1:5。
正向导通特性
在通态中,IGBT可以按照“第一近似”和功率MOSFET驱动的PNP晶体管建模。图3所示是理解器件在工作时的物理特性所需的结构元件(寄生元件不考虑在内)。
如图所示,IC是VCE的一个函数(静态特性),假如阴极和阳极之间的压降不超过0.7V,即使栅信号让MOSFET沟道形成(如图所示),集电极电流IC也无法流通。当沟道上的电压大于VGE -Vth 时,电流处于饱和状态,输出电阻无限大。由于IGBT结构中含有一个双极MOSFET和一个功率MOSFET,因此,它的温度特性取决于在属性上具有对比性的两个器件的净效率。功率MOSFET的温度系数是正的,而双极的温度系数则是负的。本图描述了VCE(sat) 作为一个集电极电流的函数在不同结温时的变化情况。当必须并联两个以上的设备时,这个问题变得十分重要,而且只能按照对应某一电流率的VCE(sat)选择一个并联设备来解决问题。有时候,用一个NPT进行简易并联的效果是很好的,但是与一个电平和速度相同的PT器件相比,使用NPT会造成压降增加。
动态特性
动态特性是指IGBT在开关期间的特性。鉴于IGBT的等效电路,要控制这个器件,必须驱动MOSFET 元件。
这就是说,IGBT的驱动系统实际上应与MOSFET的相同,而且复杂程度低于双极驱动系统。如前文所述,当通过栅极提供栅正偏压时,在MOSFET部分形成一个N沟道。如果这一电子流产生的电压处于0.7V范围内, P+ / N- 则处于正向偏压控制,少数载流子注入N区,形成一个空穴双极流。导通时间是驱动电路的输出阴抗和施加的栅极电压的一个函数。通过改变栅电阻Rg (图4)值来控制器件的速度是可行的,通过这种方式,输出寄生电容Cge和 Cgc可实现不同的电荷速率。
换句话说,通过改变 Rg值,可以改变与Rg (Cge+C**) 值相等的寄生净值的时间常量(如图4所示),然后,改变*V/dti。数据表中常用的驱动电压是15V。一个电感负载的开关波形见图5,di/dt是Rg的一个函数,如图6所示,栅电阻对IGBT的导通速率的影响是很明显的。
因为Rg数值变化也会影响dv/dt斜率,因此,Rg值对功耗的影响很大 。
在关断时,再次出现了我们曾在具有功率MOSFET和 BJT 器件双重特性的等效模型中讨论过的特性。当发送到栅极的信号降低到密勒效应初始值时,VCE开始升高。如前文所述,根据驱动器的情况,VCE达到最大电平而且受到Cge和 Cgc的密勒效应影响后,电流不会立即归零,相反会出现一个典型的尾状,其长度取决于少数载流子的寿命。
在IGBT处于正偏压期间,这些电荷被注入到N区,这是IGBT与MOSFET开关对比最不利特性之主要原因。降低这种有害现象有多种方式。例如,可以降低导通期间从P+基片注入的空穴数量的百分比,同时,通过提高掺杂质水平和缓冲层厚度,来提高重组速度。由于VCE(sat) 增高和潜在的闩锁问题,这种排除空穴的做法会降低电流的处理能力。