发布网友 发布时间:2022-04-25 13:53
共3个回答
热心网友 时间:2023-10-05 08:06
平面法向量的具体步骤:(待定系数法)
1、建立恰当的直角坐标系
2、设平面法向量n=(x,y,z)
3、在平面内找出两个不共线的向量,记为a=(a1,a2, a3) b=(b1,b2,b3)
4、根据法向量的定义建立方程组①n·a=0 ②n·b=0
5、解方程组,取其中一组解即可。
例如已知三个点求那个平面的法向量:
设A(x1,y1,z1),B(x2,y2,z2),C(x3,y3,z3)是已知平面上的3个点
A,B,C可以形成3个向量,向量AB,向量AC和向量BC
则AB(x2-x1,y2-y1,z2-z1),AC(x3-x1,y3-y1,z3-z1),BC(x3-x2,y3-y2,z3-z2)
设平面的法向量坐标是(x,y,z)
有(x2-x1)*x+(y2-y1)*y+(z2-z1)*z=0 且(x3-x1)*x+(y3-y1)*y+(z3-z1)*z=0 且(x3-x2)*x+(y3-y2)*y+(z3-z2)*z=0
可以解得x,y,z。
三维平面的法线是垂直于该平面的三维向量。曲面在某点P处的法线为垂直于该点切平面(tangent plane)的向量。
法线是与多边形(polygon)的曲面垂直的理论线,一个平面(plane)存在无限个法向量(normal vector)。在电脑图学(computer graphics)的领域里,法线决定着曲面与光源(light source)的浓淡处理(Flat Shading),对于每个点光源位置,其亮度取决于曲面法线的方向。
如果一个非零向量n与平面a垂直,则称向量n为平面a的法向量。
垂直于平面的直线所表示的向量为该平面的法向量。每一个平面存在无数个法向量。
热心网友 时间:2023-10-05 08:06
如果是高中数学,可以这样
向量BA=(1,0,-1),向量BC=(0,1,1)
设法向量p=(a,y,z)
p与BA,BC都垂直
x-z=0,y+z=0
x=-y=z
取一组非零解,x=1,y=-1,z=1
所求法向量(1,-1,1)
大学
用叉乘,行列式.
向量AB=(1,0,-1) 向量AC=(1,-1,-2)
平面ABC的法向量n=向量AB×向量AC
i,j,k
= 1,0,-1
1,-1,-2
=0×(-2)×i+(-1)×1×j+1×(-1)×k
-[0×1×k+(-1)×(-1)×i+(-2)×1×j]
=(-i,j,-k)=(-1,1,-1)
方向遵循右手定则.
热心网友 时间:2023-10-05 08:07
向量BA=(1,0,-1),向量BC=(0,1,1)
设法向量p=(a,y,z)
p与BA,BC都垂直
x-z=0,y+z=0
x=-y=z
取一组非零解,x=1,y=-1,z=1
所求法向量(1,-1,1)
大学
用叉乘,行列式。
向量AB=(1,0,-1)
向量AC=(1,-1,-2)
平面ABC的法向量n=向量AB×向量AC
i,
j,
k
=
1,
0,
-1
1,
-1,
-2
=0×(-2)×i+(-1)×1×j+1×(-1)×k
-[0×1×k+(-1)×(-1)×i+(-2)×1×j]
=(-i,j,-k)=(-1,1,-1)
方向遵循右手定则。
垂直于平面的直线所表示的向量为该平面的法向量。由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量(包括两个单位法向量)。
扩展资料:
如果一个非零向量n与平面a垂直,则称向量n为平面a的法向量。垂直于平面的直线所表示的向量为该平面的法向量。每一个平面存在无数个法向量。
如果曲面在某点没有切平面,那么在该点就没有法线。例如,圆锥的顶点以及底面的边线处都没有法线,但是圆锥的法线是几乎处处存在的。通常一个满足Lipschitz连续的曲面可以认为法线几乎处处存在。
在空间直角坐标系中,分别取与x轴、y轴,z轴方向相同的3个单位向量i,j,k作为一组基底。若为该坐标系内的任意向量,以坐标原点O为起点作向量a。
由空间基本定理知,有且只有一组实数(x,y,z),使得a=ix+jy+kz,因此把实数对(x,y,z)叫做向量a的坐标,记作a=(x,y,z)。这就是向量a的坐标表示。
参考资料来源:搜狗百科——法向量