发布网友 发布时间:2022-04-23 09:52
共1个回答
热心网友 时间:2023-06-21 15:30
1、用长方形面积推导:将圆n等分,然后将小扇形拼成长方形,长方形的长等于圆周长的一半,即πr,长方形的宽等于圆的半径r,因为长方形的面积=长×宽,所以 圆的面积=πr×r =πr².
2、用三角形面积推导:将圆n等分,得到n个小扇形,将其近似于三角形,底边为2πr/n,高为r,小扇形面积Sn=πr²/n,将n个Sn=πr²/n加起来就得到圆的面积S=πr²∑1/n=πr²(n个1/n加起来等于1)
3、用定积分推导:设圆心在原点,半径为r.用第一象限四分之一圆的面积乘4.y=√(r²-x²),则圆的面积S=4∫(0,r)ydx=4∫(0,r)√(r²-x²)dx=4[x√(r²-x²)/2+r²arcsin(x/r)/2](0,r) 用x=r代入上式减去x=0代入上式,即可得S=πr²