发布网友 发布时间:2022-04-22 18:20
共2个回答
热心网友 时间:2022-07-11 17:12
向量的乘法分为数量积和向量积两种。
对于向量的数量积,计算公式为:
A=(x1,y1,z1),B=(x2,y2,z2),A与B的数量积为x1x2+y1y2+z1z2。
对于向量的向量积,计算公式为:
A=(x1,y1,z1),B=(x2,y2,z2),则A与B的向量积为
代数规则:
1、反交换律:a×b=-b×a
2、加法的分配律:a×(b+c)=a×b+a×c。
3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。
4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。
5、分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的R3构成了一个李代数。
6、两个非零向量a和b平行,当且仅当a×b=0。
热心网友 时间:2022-07-11 18:30
在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为一组基底.a为平面直角坐标系内的任意向量,以坐标原点O为起点作向量OP=a.由平面向量基本定理知,有且只有一对实数(x,y),使得 a=向量OP=xi+yj,因此把实数对(x,y)叫做向量a的坐标,记作a=(x,y).这就是向量a的坐标表示.其中(x,y)就是点P的坐标.向量OP称为点P的位置向量.