首页 热点资讯 义务教育 高等教育 出国留学 考研考公

谁能告诉我函数是怎么回事?(详细一点)

发布网友 发布时间:2022-04-23 15:09

我来回答

5个回答

热心网友 时间:2023-10-05 11:24

传统在某一变化过程中有两个变量x和y,对于x的每一个确定的值,y都有唯一确定的值与它对应,则y与x有函数关系。一般用
表示。其中x叫做自变量,y叫做因变量。经典在某个坐标变化过程中,如果有两个变量x和y,对每一个给定的x值,y都有唯一确定的值与它对应,确定y=x的函数。x=自变量,y作为x的因变量。另外,若对于每一个给定的y值,都有X与其对应。现代一般地,给定非空数集A,B,按照某个对应法则f,使得A中任一元素x,都有B中唯一确定的y与之对应,那么从集合A到集合B的这个对应,叫做从集合A到集合B的
一个
函数。

记作:x→y=f(x),x∈A.集合A叫做函数的定义域,记为D,集合{y∣y=f(x),x∈A}叫做值域,记为C。定义域,值域,对应法则称为函数的三要素。一般书写为y=f(x),x∈D.若省略定义域,则指使函数有意义的集合。映射一般地,给定非空数集A,B,从集合A到集合B的一个映射,叫做从集合A到集合B的
一个
函数。
向量函数
:
自变量是向量的函数叫向量函数
对应、映射、函数三者的重要关系:
函数是数集上的映射,映射是特指的对应。即:函数包含于映射包含于对应编程函数过程中的这些语句用于完成某些有意义的工作——通常是处理文本,控制输入或计算数值。通过在程序代码中引入函数名称和所需的参数,可在该程序中执行(或称调用)该函数。类似过程,不过函数一般都有一个返回值。它们都可在自己结构里面调用自己,称为递归。大多数编程语言构建函数的方法里都含有Function关键字(或称保留字)。编辑本段简介首先要理解,函数是发生在非空
数集
之间的一种对应关系。然后,要理解发生在A、B之间的函数关系不止一个。最后,要重点理解函数的三要素。

函数的对应法则通常用解析式表示,但大量的函数关系是无法用解析式表示的,可以用图象,表格及其他形式表示。概念在一个变化过程中,发生变化的量叫变量(数学中,常常为x,而y则随x值的变化而变化),有些数值是不随变量而改变的,我们称它们为常量。自变量:函数一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。函数值:在y是x的函数中,x确定一个值,y就随之确定一个值,当x取a时,y就随之确定为b,b就叫做a的函数值。映射定义设A和B是两个
非空
集合,如果按照某种对应关系f,对于集合A中的
任何一个
元素a,在集合B中都
存在唯一
的一个元素b与之对应,那么,这样的对应(包括集合A,B,以及集合A到集合B的对应关系f)叫做集合A到集合B的
映射
(Mapping),记作f:A→B。其中,b称为a在映射f下的

,记作:b=f(a);
a称为b关于映射f的
原象。
集合A中所有元素的象的集合记作f(A)。则有:定义在非空数集之间的映射称为函数。(函数的自变量是一种特殊的原象,因变量是特殊的象)几何含义函数与不等式和方程存在联系(初等函数)。令函数值等于零,从几何角度看,对应的自变量的值就是图象与X轴的交点的横坐标;从代数角度看,对应的自变量是方程的解。另外,把函数的表达式(无表达式的函数除外)中的“=”换成“<”或“>”,再把“Y”换成其它代数式,函数就变成了不等式,可以求自变量的范围。集合论如果X到Y的二元关系f:X×Y,对于每个x∈X,都有唯一的y∈Y,使得<x,y>∈f,则称f为X到Y的函数,记做:f:X→Y。当X=X1×…×Xn时,称f为n元函数。其特点:值域和定义域重合单值性:取区间任意两变量x1,x2,且x1<x2,如果对应的y1<y2,则函数在此区间单调递增,反之,单调递减元素输入值的集合X被称为f的定义域;
可能的
输出值的集合Y被称为f的
值域
。函数的值域是指定义域中全部元素通过映射f得到的
实际
输出值的集合。注意,把对应域称作值域是不正确的,函数的值域是函数的对应域的子集。计算机科学中,参数和返回值的数据类型分别确定了子程序的定义域和对应域。因此定义域和对应域是函数一开始就确定的强制进行约束。另一方面,值域是和实际的实现有关。分类
单射函数
,将不同的变量映射到不同的值。即:若x1和x2∈X,则仅当x1≠x2时有f(x1)≠
f(x2)。
单射满射
双射
满射函数
,其值域即为其对映域。即:对映射f的对映域中之任意y,都存在至少一个x满足

双射函数
,既是单射的又是满射的。也叫一一对应。双射函数经常被用于表明集合X和Y是等势的,即有一样的基数。如果在两个集合之间可以建立一个一一对应,则说这两个集合等势。象和原象元素x∈X在f的象就是f(x),他们所取的式值为0。图象函数f的图象是平面上点对(x,f(x))的集合,其中x取定义域上所有成员的。函数图象可以帮助理解证明一些定理。如果X和Y都是连续的线,则函数的图象有很直观表示注意两个集合X和Y的二元关系有两个定义:一是三元组(X,Y,G),其中G是关系的图;二是索性以关系的图定义。用第二个定义则函数f等于其图象。例如:
当k>0时,直线为升,过一三象限或向上平移,向下平移象限;当k<0时,直线为降,过二四象限,向上或向下平移象限。定义域若函数y=f(u)的定义域是B﹐函数u=g(x)的定义域是A﹐则复合函数y=f[g(x)]的定义域是
D={x|x∈A,且g(x)∈B}
编辑本段性质有界性设函数f(x)的定义域为D,数集X包含于D。如果存在数K1,使得f(x)≤K1对任一x∈X都成立,则称函数f(x)在X上有上界,而K1称为函数f(x)在X上的一个上界。如果存在数K2,使得f(x)≥K2对任一x∈X都成立,则称函数f(x)在X上有下界,而K2称为函数f(x)在X上的一个下界。如果存在正数M,使得|f(x)|<=M对任一x∈X都成立,则称函数f(x)在X上有界,如果这样的M不存在,就称函数f(x)在X上无界。函数f(x)在X上有界的充分必要条件是它在X上既有上界又有下界。单调性设函数f(x)的定义域为D,区间I包含于D。如果对于区间I上任意两点x1及x2,当x1<x2时,恒有f(x1)<f(x2),则称函数f(x)在区间I上是单调增加的;如果对于区间I上任意两点x1及x2,当x1<x2时,恒有f(x1)>f(x2),则称函数f(x)在区间I上是单调减少的。单调增加和单调减少的函数统称为单调函数。奇偶性设f(x)为一个实变量实值函数,则f为
奇函数
若下列的方程对所有实数x都成立:
f(
-x)
=-
f(x)
几何上,一个奇函数与原点对称,亦即其图在绕原点做180度旋转后不会改变。奇函数的例子有x、sin(x)、sinh(x)和erf(x)。设f(x)为一实变量实值函数,则f为
偶函数
若下列的方程对所有实数x都成立:
f(x)
=f(
-x)
几何上,一个偶函数会对y轴对称,亦即其图在对y轴为镜射后不会改变。偶函数的例子有|x|、x^2、cos(x)和cosh(sec)(x)。偶函数不可能是个双射映射。周期性
狄利克雷函数
设函数f(x)的定义域为D。如果存在一个正数T,使得对于任一x∈D有(x士T)∈D,且f(x+T)=f(x)恒成立,则称f(x)为周期函数,T称为f(x)的周期,通常我们说周期函数的周期是指最小正周期。周期函数的定义域
D
为至少一边的无界区间,若D为有界的,则该函数不具周期性。并非每个周期函数都有最小正周期,例如狄利克雷(Dirichlet)函数。连续性在数学中,
连续
是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是
不连续的
函数(或者说具有
不连续性
)。设f是一个从实数集的子集射到
的函数:。f在中的某个点c处是连续的当且仅当以下的两个条件满足:
f在点c上有定义。c是中的一个聚点,并且无论自变量x在中以什么方式接近c,f(x)
的极限都存在且等于f(c)。我们称函数
到处连续

处处连续
,或者简单的
连续
,如果它在其定义域中的任意点处都连续。更一般地,我们说一个函数在它定义域的子集上是连续的当它在这个子集的每一点处都连续。不用极限的概念,也可以用下面所谓的
方法来定义实值函数的连续性。仍然考虑函数。假设c是f的定义域中的元素。函数f被称为是在c点连续当且仅当以下条件成立:对于任意的正实数,存在一个正实数δ>
0
使得对于任意定义域中的,只要x满足c
-
δ<
x
<
c
+
δ,就有成立。凹凸性设函数f(x)在I上连续。如果对于I上的两点x1≠x2,恒有f((x1+x2)/2)≤(f(x1)+f(x2))/2,(f((x1+x2)/2)<(f(x1)+f(x2))/2)那么称f(x)是区间I上的(严格)凸函数;如果恒有f((x1+x2)/2)≥(f(x1)+f(x2))/2,(f((x1+x2)/2)>(f(x1)+f(x2))/2)那么称f(x)是区间上的(严格)凹函数。实函数或虚函数
实函数
(Real
function),指定义域和值域均为实数域的函数。实函数的特性之一是可以在坐标上画出图形。
虚函数
是面向对象程序设计中的一个重要的概念。当从父类中继承的时候,虚函数和被继承的函数具有相同的签名。但是在运行过程中,运行系统将根据对象的类型,自动地选择适当的具体实现运行。虚函数是面向对象编程实现多态的基本手段。增减性依y=f(x),μ=φ(x)的增减性决定。即“增增得增,减减得增,增减得减”,可以简化为“同增异减”
判断复合函数的单调性的步骤如下
:(1)求复合函数定义域;(2)将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数);(3)判断每个常见函数的单调性;(4)将中间变量的取值范围转化为自变量的取值范围;(5)求出复合函数的单调性。例如:讨论函数y=0.8^(x²-4x+3)的单调性。解:函数定义域为R。令u=x²-4x+3,y=0.8^u。指数函数y=0.8^u在(-∞,+∞)上是减函数,
u=x²-4x+3在(-∞,2]上是减函数,在[2,+∞)上是增函数,
∴函数y=0.8^(x²-4x+3)在(-∞,2]上是增函数,在[2,+∞)上是减函数。
利用复合函数求参数取值范围
求参数的取值范围是一类重要问题,解题关键是建立关于这个参数的不等式组,必须将已知的所有条件加以转化。周期性设y=f(x),的最小正周期为T1,μ=φ(x)的最小正周期为T2,则y=f(μ)的最小正周期为T1*T2,任一周期可表示为k*T1*T2(k属于R+)
周期函数性质:
(1)若T(T≠0)是f(x)的周期,则-T也是f(x)的周期。(2)若T(T≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。(3)若T1与T2都是f(x)的周期,则T1±T2也是f(x)的周期。(4)若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。(5)T*是f(x)的最小正周期,且T1、T2分别是f(x)的两个周期,则T1、T2∈Q(Q是有理数集)(6)若T1、T2是f(x)的两个周期,且
T
*是无理数,则f(x)不存在最小正周期。(7)周期函数f(x)的定义域M必定是双方无界的集合。

热心网友 时间:2023-10-05 11:25

年级上册第十一章“一次函数”简介

课程教材研究所 田载今

一、教科书内容和课程学习目标

(一)教科书内容

本章的主要内容包括:变量与函数的概念,函数的三种表示法,正比例函数和一次函数的概念、图象、性质和应用举例,用函数观点再认识一元一次方程、一元一次不等式和二元一次方程组。

全章共包括三节:

11.1 变量与函数

11.2 一次函数

11.3 用函数观点看方程(组)与不等式

其中,11.1 节是全章的基础部分,11.2节是全章的重点内容,11.3节是引申的内容。

函数是数学中极为重要的基本概念,它的抽象性较强,接受并理解它有一定难度,这也是本章的难点。

变化与对应的思想体现在函数概念之中,用运动变化的眼光、以函数为工具、从数量关系和图象两方面动态地分析问题,是本章学习的特点。

(二)本章知识结构框图

(三)课程学习目标

本章内容的设计与编写以下列目标为出发点。

1.以探索实际问题中的数量关系和变化规律为背景,经历“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型;

2.结合实例,了解常量、变量和函数的概念,体会“变化与对应”的思想,了解函数的三种表示方法(列表法、解析式法和图象法),能利用图象数形结合地分析简单的函数关系;

3.理解正比例函数和一次函数的概念,会画它们的图象,能结合图象讨论这些函数的基本性质,能利用这些函数分析和解决简单实际问题;

4.通过讨论一次函数与方程(组)及不等式的关系,从运动变化的角度,用函数的观点加深对已经学习过的方程(组)及不等式等内容的认识,构建和发展相互联系的知识体系。

(四)课时安排

本章教学时间约需15课时,具体分配如下(仅供参考):

11.1 变量与函数 (5课时)

11.2 一次函数 (5课时)

11.3 用函数观点看方程(组)与不等式 (3课时)

数学活动

小结 (2课时)

二、本章的编写特点

(一)反映函数概念的实际背景,渗透“变化与对应”的思想

在建立和运用函数这种数学模型的过程之中,“变化与对应”的思想是重要的基础。所谓变化与对应的思想包括以下两个基本意思。

1.世界是变化的,客观事物中存在大量的变量;

2.在同一个变化过程中,变量之间不是孤立的,而是相互联系的,一个变量的变化会引起其他变量的相应变化,这些变化之间存在对应关系。

函数是数量化地表达变化与对应思想的数学工具,变化规律表现在变量(自变量与函数)之间的对应关系上,函数通过数或形定量地描述这种对应关系。变化与对应思想正是本章内容中蕴涵的基本思想。

人的认识过程是波浪式前进、螺旋式上升的。学习数学中的一个重要的基本概念,需要分阶段地完成,逐步深化认识程度。本套教科书对代数函数的学习分三章安排,即八年级上学期学习第11章“一次函数”,八年级下学期学习第17章“反比例函数”,九年级下学期学习第26章“二次函数”。在学习这些内容之前,分别安排了学习一次方程(组)、分式方程和一元二次方程,这是按代数运算类型划分阶段,将函数作为方程的后续内容。

本章是学习函数的第一阶段,其教学目标如前所述,重点在于初步认识函数概念,并具体讨论最简单的初等函数——一次函数。本章教科书力求能在具体的数学内容中渗透体现变化与对应的思想,使学生能潜移默化地感受体会函数内容中最基本的东西,在对数学思想方法的学习方面有所收获。

本章是在学生认识了一元一次方程、二元一次方程组和一元一次不等式等以一次(线性)运算为基础的数学模型后,从变化和对应的角度,对一次运算进行更深入的讨论。

教科书在专门对一次函数讨论之前,安排学生先了解函数的一般概念。11.1节首先从五个具有实际背景的问题入手,引导学生通过填表和列式表示问题中相关的量,从中认识常量和变量的主要特征,学会区别它们。接着,教科书通过“归纳”栏目总结出这些问题中变量间关系的共同特点,即问题中的两个变量互相联系,当其中一个变量取定一个值时,另一变量有唯一确定的对应值。教科书又继续用心电图、人口统计表等问题对这种变化与对应关系进行了补充和强化,这为后面的函数表示法埋下了伏笔。在此基础上,教科书第一次给出了函数的一般概念以及自变量、函数值等概念。教科书中给出的函数定义是突出变化与对应的,其中主要有两层意思:

1.两个变量互相联系,一个变量变化时另一个变量也发生变化;

2.函数与自变量之间是单值对应关系,自变量的值确定后,函数的值是唯一确定的。

这是关于函数的最基本、最朴素的刻画。这一节的最后部分重点讨论了函数图象的概念,图象是直观地描述和研究函数的重要工具,三种常见的函数表示法(列表法、解析式法和图象法)是反映函数的三种不同形式。

(二)从特殊到一般地认识一次函数

人们认识事物往往经历“从特殊到一般”的过程,教科书对本章重点内容的安排正是按照这样的过程展现的。

在对函数概念初步讨论后,教科书转入对一种具体的初等函数的讨论,11.2节的标题“一次函数”点出了这一节的核心对象。这一节首先从讨论正比例函数开始。正比例函数是特殊的一次函数,即y=kx+b中b=0的类型。对正比例函数的定义、图象和性质的讨论,可以为讨论一般的一次函数奠定基础。

在分析具体问题时,教科书注意引导学生利用事物之间的联系从特殊到一般地认识问题,例如,讨论一次函数的图象时,教科书先对比函数y=kx+b和y=kx的区别,由直线y=kx的平移变换过渡到直线y=kx+b,然后再得出由两点确定直线的一般方法。采用这种处理方式能够展示解决问题的一种基本策略,即“先特殊化、简单化,再一般化、复杂化”的做法。

(三)用函数观点回顾与审视相关内容,加强知识体系的构建

在学习过程中,人们需要不断地提高认识问题的水平,这包括对过去已认识过的事物的再认识,也包括对新认识的事物与已认识的事物之间的联系的认识。这种认识水平的提高,是构建知识体系的过程中不可缺少的。

本章最后的11.3节“用函数观点看方程(组)与不等式”,从函数的角度对前面学习过的一元一次方程、一元一次不等式和二元一次方程组重新进行了分析,这种再认识不是原来水平上的回顾复习,而是站在更高的起点上的动态分析。用一次函数可以把上述三个不同的数学对象统一认识,由此可见函数的重要性。“水涨船高”,随着知识的积累增加,认识事物的水平也会相应提高;站得高就看得远,通过学习本节内容,不仅可以加深对方程(组)与不等式等数学对象的理解,而且可以加大对已经学过的相关内容之间的联系的认识,加强知识间横纵向的融会贯通,提高灵活地分析解决问题的能力。这也从一个侧面反映了函数概念的作用。

(四)注重联系实际问题,体现数学建模的作用

世界是运动变化的,函数是研究运动变化的重要数学模型,它来源于客观实际又服务于客观实际。本章教科书中实际问题贯穿于始终,它们中有些是作为函数的实际背景,为降低学习抽象概念的难度服务的。例如,在引入函数概念时,教科书通过对一系列实际问题中变量间关系的分析与描述,归纳出一般性的规律要点,得出函数的定义。这样的过程是由具体到抽象,由特殊到一般的过程,是以实际问题抽象为数学模型为线索的展现过程。有些实际问题是作为应用举例为体现函数的广泛的应用性,为培养应用数学解决实际问题的意识和能力服务的。例如,11.2节中的例6就是这样的问题,它是一个选择最优方案的实际问题,可以归为线性规划的初级问题。要解决这个问题,需要先确定影响总运费的最关键的变量,再列出表示总运费的函数解析式,然后分析这个解析式或相应的图象,找出总运费的最小值。分析和解决这个问题的过程,对体现数学建模的作用具有比较典型的意义。

本章的数学活动中,安排了根据表格中实际问题的数据信息用函数进行预测估计或选择方案的问题。安排这些问题的目的在于:一方面通过实际生活中的问题,进一步突出函数这种数学模型应用的广泛性和有效性;另一方面使学生能在解决实际问题的情境中运用所学数学知识,进一步提高分析问题和解决问题的综合能力。 本章在学生已有建立方程或不等式这样的数学模型的基础上,继续重视数学与实际的关系,在建立函数这种应用更广泛的数学模型的过程中继续体现建模思想。

此外,教科书对于数学与其他科学技术的联系也予以关注。例如,“阅读与思考 科学家如何测算地球的年龄”中,介绍了放射性物质蜕变过程中指数函数变化曲线对确定半衰期的作用等。编者希望学生通过学习本章不仅进一步学习数学,而且也能扩大对相关科技知识的了解。

三、几个值得关注的问题

(一)重视数学概念中蕴涵的思想,注意从运动变化和联系对应的角度认识函数

数学是以数量关系和空间形式为主要研究对象的科学,数量关系和空间形式是从现实世界中抽象出来的,世界永远是处于运动变化之中的,因此无论是数量关系中还是空间形式中都充满了有关运动变化的问题。函数正是研究运动变化的重要数学模型,它反映的是变量之间的对应规律,它对研究数量关系的作用是十分显然的。由于空间形式可以代数化(解析几何的产生就是典型例证),所以在对于空间形式的研究中函数也能发挥巨大作用,数学史的发展对此有充分的证明,函数在当今数学的各个领域都占有极为重要的角色。

函数概念来源于客观实际需要,也来自数学内部发展的需要,它是以变化与对应的思想为基础的数学概念。怎样认识函数概念呢?学习函数概念不能只注重背记定义而不关注它的实质,要使学生理解定义的真正含义,运动变化与联系对应。使学生了解对于许多客观事物必须从运动变化的角度研究,许多问题中的各种变量是相互联系的,变量之间存在对应规律。变量的值之间存在对应关系,其中就有单值对应关系,刻画这种关系的数学模型就是函数。本章所讨论的是最简单、最基本的函数。但是函数不论简单还是复杂,在本质上都是上面所说的那样的数学模型。作为关于函数的初始教学,应有意识地体现函数的本质,这正是本章内容中蕴涵的基本思想。当然,对于运动变化与联系对应的思想的认识也是需要逐步理解的,所以教学中应注意在不同阶段对这一思想的渗透介绍要有不同的做法和要求,要逐步深化,要从具体到抽象,从特殊到一般地引导学生认识它。

本套教科书在本章中首次正式出现函数概念。通过本章教学,学生应对函数形成初步的正确认识,即认识到虽然函数的表示方法有多种,因问题不同函数的具体形式可以形形色色,各种函数都是反映变化规律的数学工具,现在学习的函数都是刻画同一个变化过程中两个变量之间的对应关系的模型,对于同一类问题可以用同一类函数进行研究(例如用一次函数研究线性规划问题)。

(二)借助实际问题情境,由具体到抽象地认识函数;通过函数应用举例,体现数学建模思想

现实中存在大量问题涉及具有简单函数关系的变量,其中许多问题中的数量关系是一次(也称线性)的,这为学习本章内容提供了大量的现实素材。在本章教科书中,实际问题情境多次出现,其作用主要体现在以下两方面。

1.引入或解释函数等概念。例如,通过候鸟飞行问题引入正比例函数,通过登山问题引入一次函数,通过11.1节中一系列具体例子解释变量间的对应关系,等,这样做的目的是借助直观的、具体的事物为理解抽象的内容服务。

2.作为函数的应用举例。例如11.1节中例4的水位预测,11.2节中例6的运输规划,等等,它们都可以体现数学建摸思想,反映函数的广泛应用性。

本章明确提出:“为了更深刻地认识千变万化的世界,人们经归纳总结得出一个重要的数学工具——函数,用它描述变化中的数量关系。函数的应用极其广泛。”在本章的教学和学习中,要充分注意有关现实背景,通过它们反映出函数来自实际又服务于实际,加强对函数是解决现实问题的一种重要数学模型的认识。

找出问题中相关变量之间的关系,并以数学形式表现这种关系,是本章中用数学模型表示和解决实际问题的关键步骤,而正确地理解问题情境是基础。在本章的教学和学习中,可以从多种角度思考,借助图象、表格、式子等进行分析,寻找变量之间的关系,检验所建立的函数的合理性。教师还可以结合实际情况选择更贴近学生生活的各种问题,引导学生用函数分析解决它们。

(三)重视数形结合的研究方法

本章所讨论的对象是函数,函数的表示法之一是图象法,即通过坐标系中的曲线上点的坐标反映变量之间的对应关系。这种表示方法的产生,将数量关系直观化、形象化,提供了用数形结合研究问题的重要方法,这在数学发展中具有重要地位。恩格斯说:“笛卡儿变数的出现,是数学中的一个转折点,从此,运动和辩证法进入了数学。”

在本章的教学和学习中,不能仅仅着眼于具体题目的解题过程,而应不断加深对相关数学思想方法的领会,从整体上认识问题的本质。以前我们曾多次提到数学思想方法是通过数学知识的载体来体现的,而对于它们的认识需要一个较长的过程,既需要教材的渗透,也需要教师的点拨,最后还需要学生自身的感受和理解。 结合本章内容可以对数形结合的方法顺势自然地理解,并逐步加以灵活运用,发挥从数和形两个方面共同分析解决问题的优势。教学过程中,在函数解析式与图象的结合方面应有细致的安排设计,注意两者的互补作用,体现两者的联系,突出两者间的转化对分析解决问题的特殊作用。学习了本章之后,不仅要知道有关函数的图象,更要体验图象的作用和数形结合的方法。数学思想方法是具体的数学知识的灵魂,数学思想方法对一个人的影响往往要大于具体的数学知识。

(四)加强对知识之间内在联系的认识,体会函数观点的统领作用

设计本章教科书的内容和结构时,注意了函数与以前所学习的其他代数知识的关系,力求在发展和构建一个较好的知识体系方面起到一定的引导作用。为此,本章安排了11.3节“用函数观点看方程(组)与不等式”,用函数的观点对前面学习过的一元一次方程、一元一次不等式和二元一次方程(组)重新进行分析。教学中应能感受到,这种再认识不是原来水平上的回顾复习,而是站在更高处进行动态的分析。教师需要明确安排这一节的目的,把握这些内容的要求尺度。教科书的设计者希望能通过这些内容的教学,加强知识间横向和纵向的联系,发挥函数对相关内容的统领作用,使学生能用一次函数把以前学习的方程和不等式等不同的数学对象统一起来加以认识,逐步达到新旧知识的融会贯通,进一步体验函数的重要性,提高灵活地分析解决问题的能力。

由于本章最后部分是以新带故的内容,其中多数内容学生并不生疏,所以这部分内容很适合探究式学习方式,希望教学中注意加强学习的主动性,注意鼓励学生积极探究,教师要为启发诱导设计必要的铺垫,让学生能通过努力来体验知识间的内在联系。

从特殊到一般地认识问题,是学习的一种途径。本章在讨论一次函数时,教科书在函数解析式、图象、性质等问题上,注意了对比函数y=kx+b和y=kx的区别,并对这些问题进行了由特殊到一般的讨论。教学中应注意这种安排的前后联系,体现解决问题时“先特殊化、简单化,再一般化、复杂化”的基本策略。

(五)注重对于基础知识和基本技能的掌握,提高基本能力

本章中函数的基本概念,函数的一般表示法和一次函数的概念、图象、性质等是基础知识;会画一次函数(包括正比例函数)的图象,能结合图象讨论这些函数的基本性质等是基本技能;能利用这些函数分析和解决简单实际问题是基本能力。 对于基础知识和基本技能的掌握和基本能力的提高,都应在教学中得到落实。例如,11.1节中对于描点法画函数图象的一般步骤进行了归纳,这对后续学习很重要,应使学生熟悉它。又如,一次函数y =kx +b(k≠0)中k的正负对函数的增减性(图象的升降)的影响等,是一次函数的基本性质,应使学生从数形两方面理解。
http://www.ezy.net/cai/ShowSoft.asp?SoftID=2040

(网址里有课件,自己看,别慌,函数要很长时间练习才行)

热心网友 时间:2023-10-05 11:25

上一节课我们讲了函数的概念:一般地,设在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数.

生活中有很多实例反映了函数关系,你能举出一个,并指出式中的自变量与函数吗?

1、学校计划组织一次春游,学生每人交30元,求总金额y(元)与学生数n(个)的关系.

2、为迎接新年,班委会计划购买100元的小礼物送给同学,求所能购买的总数n(个)与单价(a)元的关系.

解:1、y=30n

y是函数,n是自变量

2、 ,n是函数,a是自变量.

(二)讲授新课

刚才所举例子中的函数,都是利用数学式子即解析式表示的.这种用数学式子表示函数时,要考虑自变量的取值必须使解析式有意义.如第一题中的学生数n必须是正整数.

例1、求下列函数中自变量x的取值范围.

(1) (2)

(3) (4)

(5) (6)

分析:在(1)、(2)中,x取任意实数, 与 都有意义.

(3)小题的 是一个分式,分式成立的条件是分母不为0.这道题的分母是 ,因此要求 .

同理(4)小题的 也是分式,分式成立的条件是分母不为0,这道题的分母是 ,因此要求 且 .

第(5)小题, 是二次根式,二次根式成立的条件是被开方数大于、等于零. 的被开方数是 .

同理,第(6)小题 也是二次根式, 是被开方数,

.

解:(1)全体实数

(2)全体实数

(3)

(4) 且

(5)

(6)

小结:从上面的例题中可以看出函数的解析式是整数时,自变量可取全体实数;函数的解析式是分式时,自变量的取值应使分母不为零;函数的解析式是二次根式时,自变量的取值应使被开方数大于、等于零.

注意:有些同学没有真正理解解析式是分式时,自变量的取值应使分母不为零,片面地认为,凡是分母,只要 即可.教师可将解题步骤设计得细致一些.先提问本题的分母是什么?然后再要求分式的分母不为零.求出使函数成立的自变量的取值范围.二次根式的问题也与次类似.

但象第(4)小题,有些同学会犯这样的错误,将答案写成 或 .在解一元二次方程时,方程的两根用“或者”联接,在这里就直接拿过来用.限于初中学生的接受能力,教师可联系日常生活讲清“且”与“或”.说明这里 与 是并且的关系.即2与-1这两个值x都不能取.

例2、自行车保管站在某个星期日保管的自行车共有3500辆次,其中变速车保管费是每辆一次0.5元,一般车保管费是每次一辆0.3元.

(1)若设一般车停放的辆次数为x,总的保管费收入为y元,试写出y关于x的函数关系式;

(2)若估计前来停放的3500辆次自行车中,变速车的辆次不小于25%,但不大于40%,试求该保管站这个星期日收入保管费总数的范围.

解:(1)

(x是正整数,

(2)若变速车的辆次不小于25%,但不大于40%,



收入在1225元至1330元之间

总结:对于反映实际问题的函数关系,应使得实际问题有意义.这样,就要求联系实际,具体问题具体分析.

对于函数 ,当自变量 时,相应的函数y的值是 .60叫做这个函数当 时的函数值.

例3、求下列函数当 时的函数值:

(1) (2)

(3) (4)

解:1)当 时,

(2)当 时,

(3)当 时,

(4)当 时,

注:本例既锻炼了学生的计算能力,又创设了情境,让学生体会对于x的每一个值,y都有唯一确定的值与之对应.以此加深对函数的理解.

(二)小结:

这节课,我们进一步地研究了有关函数的概念.在研究函数关系时首先要考虑自变量的取值范围.因此,要求大家能掌握解析式含有一个自变量的简单的整式、分式、二次根式的函数的自变量取值范围的求法,并能求出其相应的函数值.另外,对于反映实际问题的函数关系,要具体问题具体分析.

作业:习题13.2A组2、3、5

热心网友 时间:2023-10-05 11:26

函数简单的说就是一个计算式子,一般可以写成y=f(x),意思就是给你一个x的值,带入到f(x)里面之后算出来的值就是y。
比如:f(x)=2x+1 这是一个函数
y=f(x) 当x=46时,y=f(46)=2×46+1=93
当x=52时,y=f(52)=2×52+1=105
有无数个x就对应了无数个y,并且是一个对一个
而函数的图像就是由这无数个x和y组成的,如果把x看成横坐标,y看成纵坐标,那么一对对应的(x,y)就是一个点,所有满足y=f(x)的点合起来就是一个图像了

热心网友 时间:2023-10-05 11:26

不用这么复杂,说得简单点呢,就是说一个变量和一个值的问题(即当自变量等于什么时,另外一个值就等于什么)就是用一个含有一个字母的整式表示另一个字母。

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com