发布网友 发布时间:2022-04-21 22:13
共1个回答
热心网友 时间:2023-07-21 06:50
高中数学射影定理公式:CD²=AD·DB;BC²=BD·BA;AC²=AD·AB;AC·BC=AB·CD
资料拓展:
直角三角形射影定理,又称“欧几里德定理”,定理内容是直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项,每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
公式表达为:在Rt△ABC中,∠ACB=90°,cd是斜边ab上的高,则有射影定理如下:①CD²=AD·DB;②BC²=BD·BA;③AC²=AD·AB;④AC·BC=AB·CD(等积式,可用面积来证明)
所谓射影,就是正投影。直角三角形射影定理(又叫欧几里德(Euclid)定理):直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
因为射影就是将原图形的长度(三角形中称高)缩放,所以宽度是不变的,又因为平面多边形的面积比=边长的平方比。所以就是图形的长度(三角形中称高)的比。
那么这个比值应该是平面所成角的余弦值。在两平面中作一直角三角形,并使斜边和一直角边垂直于棱(即原多边形图的平面和射影平面的交线)。
那么三角形的斜边和另一直角边的比值就是其多边形的长度比,即为平面多边形的面积比,而将这个比值放到该平面三角形中去运算即可。
欧几里得(希腊文:Ευκλειδης ,公元前325年—公元前265年),古希腊数学家,被称为“几何之父”。他活跃于托勒密一世(公元前323年-公元前283年)时期的亚历山大里亚。
他最著名的著作《几何原本》是欧洲数学的基础,总结了平面几何五大公设,被广泛的认为是历史上最成功的教科书。欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品。