什么是材料的疲劳?
2024-10-25
来源:华拓网
在循环加载下,发生在材料某点处局部的、永久性的损伤递增过程。经足够的应力或应变循环后,损伤累积可使材料产生裂纹 ,或使裂纹进一步扩展至完全断裂。出现可见裂纹或者完全断裂都叫疲劳破坏。法国的 J.-V.彭赛列于1839年首先论述了疲劳问题并提出“疲劳”这一术语。但疲劳研究的奠基人则是德国的A.沃勒。他在19世纪50~60年代首先得到表征疲劳性能的S-N曲线,并提出疲劳极限的概念。疲劳研究虽有百余年历史,文献极多,但理论不够完善。近年来,断裂力学的进展,丰富了传统疲劳理论的内容,促进了疲劳理论的发展。当前的发展趋势是把微观理论和宏观理论结合起来从本质上探究疲劳破坏的机理。 疲劳特征疲劳破坏是一种损伤积累的过程,因此它的力学特征不同于静力破坏。不同之处主要表现为:①在循环应力远小于静强度极限(见材料的力学性能的情况下破坏就可能发生,但不是立刻发生的,而要经历一段时间,甚至很长的时间;②疲劳破坏前,即使塑性材料(延性材料)有时也没有显著的残余变形。 金属疲劳破坏可分为三个阶段:①微观裂纹扩展阶段。在循环加载下,由于物体内部微观组织结构的不均匀性,某些薄弱部位首先形成微观裂纹,此后,裂纹即沿着与主应力约成45°角的最大剪应力方向扩展。在此阶段,裂纹长度大致在0.05毫米以内。若继续加载,微观裂纹就会发展成为宏观裂纹。②宏观裂纹扩展阶段。裂纹基本上沿着与主应力垂直的方向扩展。借助电子显微镜可在断口表面上观察到此阶段中每一应力循环所遗留的疲劳条带。③瞬时断裂阶段。当裂纹扩大到使物体残存截面不足以抵抗外载荷时,物体就会在某一次加载下突然断裂。 在疲劳宏观断口上往往有两个区域:光滑区域和颗粒状区域。疲劳裂纹的起始点称作疲劳源。实际构件上的疲劳源总是出现在应力集中区,裂纹从疲劳源向四周扩展。由于反复变形,裂纹的两个表面时而分离,时而挤压,这样就形成了光滑区域,即疲劳裂纹第二阶段扩展区域。第三阶段的瞬时断裂区域表面呈现较粗糙的颗粒状。如果循环应力的变化不是稳态的,应力幅不保持恒定,裂纹扩展忽快、忽慢或者停顿,则在光滑区域上用肉眼可看到贝壳状或海滩状纹迹的疲劳弧线 。 循环应力疲劳破坏是在循环应力或循环应变作用下发生的。为了便于研究和分析疲劳问题,国际上对循环应力表示法已作出统一规定。循环应力的每一个周期变化称作一个应力循环。图4所示的恒幅循环应力由以下诸分量表示:①最大应力σ,应力循环中最大代数值的应力,以拉应力为正,压应力为负。②最小应力σ,应力循环中最小代数值的应力,以拉应力为正,压应力为负。③平均应力σ嚧,最大应力和最小应力的代数平均值,即σ嚧=(σ+σ)。④应力幅σa,最大应力和最小应力的代数差的一半,即σa=(σ-σ)。有些国家的文献将σa称作交变应力,但在中国常用交变应力一词表示循环应力。⑤应力变程σr,又称应力范围,是最大应力与最小应力之差,即应力幅的两倍。⑥应力比R,又称循环特征,是最小应力与最大应力的代数比值,即。R =-1的应力循环称为对称循环,其最大应力和最小应力绝对值相等,符号相反,且平均应力为零;R=0的应力循环称为脉动循环,其最小应力为零;R等于其他值的应力循环称为非对称循环。 恒幅循环应变的表示法与此类似。 应力循环可以看成两部分应力的组合,一部分是数值等于平均应力σ嚧的静应力,另一部分是在平均应力上变化的动应力。在四个应力分量σ、σ、σa、σ嚧中只有两个是独立的。任意给定两个,其余两个就能确定。 用来确定应力循环的一对应力分量σ、σ或σa、σ嚧称为应力水平。对恒幅循环应力,当给定R或σ嚧时,应力水平可由σ或σa表示。产生疲劳破坏所需的循环数取决于应力水平的高低,破坏循环数越大,表示施加的应力水平越低。 疲劳寿命在循环加载下,产生疲劳破坏所需的应力或应变循环数称为疲劳寿命。对实际构件,疲劳寿命常以工作小时计。构件在出现工程裂纹以前的疲劳寿命称为裂纹形成寿命或裂纹起始寿命。工程裂纹指宏观可见的或可检的裂纹,其长度无统一规定,一般在0.2~1.0毫米范围内。自工程裂纹扩展至完全断裂的疲劳寿命称为裂纹扩展寿命。总寿命是二者之和。因为工程裂纹长度远大于金属晶粒尺寸,故可将裂纹作为物体边界,并将其周围材料视作均匀的连续介质,应用断裂力学方法研究裂纹扩展规律。 为了便于分析研究,常常按破坏循环次数的高低将疲劳分为两类:①高循环疲劳(高周疲劳):破坏循环次数高于104~105的疲劳,一般振动元件、传动轴等的疲劳属此类。其特点是:作用于构件上的应力水平较低,应力和应变呈线性关系。②低循环疲劳(低周疲劳):破坏循环次数低于104~105的疲劳,典型实例有压力容器、燃气轮机构件等的疲劳。其特点是:作用于构件的应力水平较高,材料处于塑性状态。很多实际构件在变幅循环应力作用下的疲劳既不是纯高循环疲劳也不是纯低循环疲劳,而是二者的综合。 相应地,裂纹扩展也分为高循环和低循环两类。高循环疲劳裂纹扩展规律可利用线弹性断裂力学方法研究;低循环疲劳裂纹扩展规律一般应采用弹塑性断裂力学方法研究,不过由于问题十分复杂,尚未很好地解决。 实践表明,疲劳寿命分散性较大,高循环疲劳尤其如此,因此必须进行统计分析,考虑存活(概)率(即可靠度)的问题。具有存活率p(如95%、99%、99.9%)的疲劳寿命Np的含义是:总体(母体)中有p的个体的疲劳寿命大于Np。而破坏(概)率等于(1-p)。 对应于高存活率或低破坏率的疲劳寿命,在设计上称为安全寿命。 疲劳问题范畴极为广泛。按材料性质及其工作环境划分,除一般金属疲劳外,还包括有非金属疲劳、高温疲劳、热疲劳(由循环热应力引起)、腐蚀疲劳、擦伤疲劳、声疲劳(由噪声激励引起)、冲击疲劳、接触疲劳等。金属疲劳寿命预估侧重于力学方面,并且是普遍关注的研究课题。为了进行疲劳寿命的理论估算和试验,首先必须了解材料的疲劳性能,以此作为理论计算的依据。其次,疲劳寿命的长短取决于所承受的循环载荷大小,为此还必须编制出供理论分析和全尺寸疲劳试验用的载荷谱。最后,根据材料的疲劳性能和载荷谱估算出疲劳寿命。以下分别加以介绍: 疲劳性能材料抵抗疲劳破坏的能力。高循环疲劳的裂纹形成阶段的疲劳性能常以S-N曲线表征,S为应力水平,N为疲劳寿命。S-N曲线需通过试验测定,试验采用小型标准试件或实际构件。若采用小型标准试件,则试件裂纹扩展寿命较短,常以断裂时循环次数作为裂纹形成寿命。试验在给定应力比R或平均应力σ嚧的前提下进行,根据不同应力水平的试验结果,以最大应力σ或应力幅σa为纵坐标,疲劳寿命N为横坐标绘制S-N曲线(图5)。表示寿命的横坐标采用对数标尺;表示应力的纵坐标采用算术标尺或对数标尺。在S-N 曲线上,对应某一寿命值的最大应力σ或应力幅σa称为疲劳强度。疲劳强度一词也泛指与疲劳有关的强度问题。为了模拟实际构件缺口处的应力集中以及研究材料对应力集中的敏感性,常需测定不同应力集中系数下的S-N曲线。 对试验结果进行统计分析后,根据某一存活率p的安全寿命所绘制的应力和安全寿命之间的关系曲线称为p-S-N曲线。 50%存活率的应力和疲劳寿命之间的关系曲线称为中值S-N曲线,也简称S-N曲线。 当循环应力中的最大应力σ小于某一极限值时,试件可经受无限次应力循环而不产生疲劳裂纹;当σ大于该极限值时,试件经有限次应力循环就会产生疲劳裂纹,该极限应力值就称为疲劳极限,或持久极限。如图5中S-N曲线的水平线段对应的纵坐标就是疲劳极限。 鉴于疲劳极限存在较大的分散性,人们根据现代统计学观点,把疲劳极限定义为:指定循环基数下的中值(50%存活率)疲劳强度。对于 S-N曲线具有水平线段的材料,循环基数取107;对于S-N曲线无水平线段的材料(如铝合金),循环基数取107~108。
显示全文