首页 热点资讯 义务教育 高等教育 出国留学 考研考公
您的当前位置:首页正文

Astro-Particle Physics

2022-08-22 来源:华拓网
7991 ceD 13 1v8452179/hp-pe:hviXraTobepublishedintheProceedingsoftheInternationalEurophysicsConferenceonHighEnergyPhysics(HEP97),19-26August1997,Jerusalem,Israel

PL8:Astro-ParticlePhysics

GeorgG.Raffelt(raffelt@mppmu.mpg.de)

Max-Planck-Institutf¨urPhysik(Werner-Heisenberg-Institut)F¨ohringerRing6,80805M¨unchen,Germany

Abstract.Recentdevelopmentsofthoseareasofastro-particlephysicsaredis-cussedthatwererepresentedattheHEP97conference.Inparticular,thecurrentstatusofdirectandindirectdark-mattersearchesandofTeVneutrinoandγ-rayastronomywillbereviewed.

1Introduction

Astro-particlephysicsissuchawidefieldthatitiscertainlyimpossibletoreviewitscurrentstatusinasinglelecture.Tomakeasensibleselectionitseemedmostappropriatetocoverthoseareaswhichwererepresentedintheparallelsessionsofthisconference,i.e.mostlyexperimentaltopicsinthear-easofdark-matterdetectionandofneutrinoandγ-rayastronomy.Oneofthemostcherisheddark-mattercandidatesisthelightestsupersymmetricparticlesothatacceleratorsearchesforsupersymmetryareofimmediatecosmologicalimportance,yetIconsiderthistopictolieoutsideofmyassignment.Like-wisethelaboratorysearchesforneutrinomassesandoscillationsareofdirectastrophysicalandcosmologicalsignificance,yettheyexceedtheboundariesofmytask.Finally,IwillnotcovertheveryexcitingrecentdevelopmentsinMeVtoGeVneutrinoastronomy(solar,supernova,andatmosphericneutri-nos)becausetheyarereviewedbyanotherspeaker[1].

2

DarkMatterSearches

2.1

DarkStars(MACHOs)

Theexistenceofhugeamountsofdarkmatterintheuniverseisnowes-tablishedbeyondanyreasonabledoubt,butitsphysicalnatureremainsanunresolvedmystery[2,3].Anumberofwell-knownargumentsnegatethepos-sibilityofapurelybaryonicuniverse,butalsopointtosignificantamountsofnonluminousbaryons.Ifsomeofthemareinthegalactichaloonemostnatu-rallyexpectsthemtobeintheformofMassiveAstrophysicalCompactHaloObjects(MACHOs)—smallandthusdimstars(browndwarfs,M-dwarfs)orstellarremnants(whitedwarfs,neutronstars,blackholes).StellarremnantsandM-dwarfsarevirtuallyexcluded[4],whichleavesuswithbrowndwarfs,i.e.normalstarswithamassbelow0.08M⊙(solarmasses)sothattheyaretoosmalltoignitehydrogen.

2G.G.RaffeltPaczy´nskiproposedin1986tosearchfordimstarsbythe“microlensing”technique[5].Adistantstarbrightenswithacharacteristiclightcurveifagravitationaldeflectorpassesnearthelineofsight.Gravitationallensingproducestwoimages,butiftheirangularseparationistoosmalltheonlyobservableeffectistheapparentbrighteningofthesource.AconvenientsampleoftargetstarsisprovidedbytheLargeMagellanicCloud(LMC),asatellitegalaxyoftheMilkyWay.TheLMChasenoughbrightstarsanditisfarenoughawayandfarenoughabovethegalacticplanethatoneintersectsagoodfractionofthegalactichalo.IfMACHOscomprisethehalo,thelensingprobability(“opticaldepth”formicrolensing)isabout10−6sothatonehastomonitor∼106starsintheLMC.Thedurationofthebrightnessexcursiondependsonthelensmass;for1M⊙itistypically3months,for10−2M⊙itis9days,for10−4M⊙itis1day,andfor10−6M⊙itis2hours.ThemicrolensingsearchwastakenupbytheMACHOandtheEROSCollaborations,bothreportingcandidatestowardtheLMCsince1993[6].Moreover,thegalacticbulgehasbeenusedasanothertargetwheremanymoreeventsoccurthroughmicrolensingbyordinarydiskstars.Whiletheseobservationsarenotsensitivetohalodarkmatter,theyallowonetodevelop

Fig.1.Exclusiondiagramat95%C.L.forthehalofractionandmassoftheassumedMACHOs[7].Theirmassesweretakentobefixedandastandardmodelforthegalactichalowasused.ThedottedlineontheleftistheEROSlimitwhenblendingandfinitesizeeffectsareignored.Thedot-dashedanddottedlinesontherightaretheEROSlimitswhen1or2oftheireventsareattributedtoMACHOs.Thecrossiscenteredonthe95%C.L.permittedrangeoftheMACHOCollaboration[8].

PL8:Astro-ParticlePhysics3

agoodunderstandingofthemicrolensingtechniqueandareaninterestingmethodtostudythegalaxyanditsstellarcontent.Withinthepastfewyearsmicrolensinghasestablisheditselfasacompletelynewapproachtoastronomy,withatleasthalfadozencollaborationspursuingobservationsofvarioustargetregions.Theyalsoproduceahugedatabaseofintrinsicallyvariablestars,whichisaninvaluableprojectinitsownright.

Farfromclarifyingthestatusofdimstarsasagalacticdarkmattercontribution,themicrolensingresultstowardtheLMCwithaboutadozenevents[7,8]arequiteconfusing.Forastandardsphericalhalotheabsenceofshort-durationeventsexcludesalargerangeofMACHOmassesasadomi-nantcomponent(Fig.1).Ontheotherhand,theobservedeventsindicateahalofractionbetweenabout10%and100%ofMACHOswithmassesaround0.4M⊙(Fig.1).Thisischaracteristicofwhitedwarfs,butagalactichaloconsistingprimarilyofwhitedwarfsishighlyimplausibleandalmostex-cluded[4].Attributingtheeventstobrowndwarfs(M<∼0.08M⊙)requiresaverynonstandarddensityand/orvelocitydistribution.OtherexplanationsincludeanunexpectedlylargecontributionfromLMCstars,athickgalacticdisk,anunrecognizedpopulationofnormalstarsbetweenusandtheLMC,andotherspeculations[9].Itisquiteunclearwhichsortofobjectsthemi-crolensingexperimentsareseeingandwherethelensesare.

MeanwhileafirstcandidatehasappearedinboththeMACHOandEROSdatatowardtheSmallMagellanicCloud(SMC)[10]whichisslightlymoredistantthantheLMCandabout20◦awayinthesky.Oneeventdoesnotcarrymuchstatisticalsignificance,butitsappearanceisconsistentwiththeLMCdataiftheyareinterpretedasevidenceforhalodarkmatter.However,thisinterpretationwouldimplyafewsolarmassesfortheSMClensduetothelargeduration.

BesidesmoredatafromtheLMCandSMCdirections,otherlinesofsightwouldbeinvaluable.OfparticularsignificanceistheAndromedagalaxyasatargetbecausethelineofsightcutsthroughthehaloalmostverticallyrelativetothegalacticdisk.Unfortunately,Andromedaissofarawaythatonecannotresolveindividualtargetstars.Onedependsonthe“pixellensing”techniquewhereonemeasuresthebrighteningofasinglepixeloftheCCDcamera;onepixelcoverstheunresolvedimagesofmanystars.Atleasttwogroupspursuethisapproachwhichhasproducedfirstlimits[11].2.2

Axions

WhilethemicrolensingsearchesseemtoindicatethatsomefractionofthegalactichalomayconsistofMACHOs,perhapsevenintheformofpri-mordialblackholes[12],particledarkmatteraficionadosshouldnotgetdisheartened—weaklyinteractingparticlesarestillthebestmotivatedop-tionforthecolddarkmatterwhichapparentlydominatestheuniverse.

OneoftwowellmotivatedpossibilitiesareaxionswhichappearasNambu-GoldstonebosonsofthespontaneouslybrokenPeccei-Quinnsymmetrywhich

4G.G.Raffelt

ismotivatedasasolutionoftheCPproblemofstronginteractions[13].Apartfromnumericalparametersoforderunity,thesemodelsarecharacterizedbyasingleunknownquantity,thePeccei-Quinnscalefaortheaxionmassma=0.62eV(107GeV/fa).Intheearlyuniverseaxionsformnonthermallyashighlyoccupiedandthusquasi-classicallow-momentumoscillationsoftheaxionfield.Ifaxionsarethedarkmatter,abroadclassofearly-universescenariospredictsmatolieintherange1µeVto1meV[14].

InamagneticfieldaxionsconvertintophotonsbythePrimakoffpro-cessbecausetheyhaveatwo-photoncoupling[15].Afrequencyof1GHzcorrespondsto4µeV;asearchexperimentforgalacticaxionsconsistsofahigh-Qmicrowaveresonatorplacedinastrongmagneticfield.Atlowtem-peratureonelooksfortheappearanceofmicrowavepowerbeyondthermalandamplifiernoise.Twopilotexperiments[16,17]couldnotreachrealisticaxionmodels,buttwoongoingexperimentswithmuchlargercavityvolumeshavetherequisitesensitivity(Fig.2).Initscurrentsetup,theLivermoreexperiment[18]usesconventionalmicrowaveamplifierswhiletheKyotoex-periment[19]employsacompletelynoveldetectiontechniquebasedontheexcitationofabeamofRydbergatomswhichpassesthroughthecavity.

Fig.2.CurrentlimitsongalacticdarkmatteraxionsfromtheUniversityofFlorida(UF)[16]andtheRochester-Brookhaven-Fermilab(RBF)[17]experimentsandsearchgoalsoftheLivermore[18]andKyoto[19]experiments.Itwasassumedthatthelocalgalacticaxiondensityis300MeVcm−3.Theaxion-photoncouplingisgivenbyLint=gaγE·Ba.TherelationshipbetweengaγandmaforthepopularDFSZandKSVZmodelsisindicated.

PL8:Astro-ParticlePhysics5

2.3WeaklyInteractingMassiveParticles(WIMPs)

TheotherfavoredclassofparticledarkmattercandidatesareWIMPs,no-tablythelightestsupersymmetricparticlesintheformofneutralinos[20].DirectsearchesrelyonWIMP-nucleusscattering,forexampleinGeorNaIcrystals[21].Theexpectedcountingrateisoforder1eventkg−1day−1andthusextremelysmall.Tobeatcosmic-rayandradioactivebackgroundsonemustgodeeplyundergroundanduseultrapurematerials.Therecoilsfor10–100GeVWIMPmassesareoforder10keV.Suchsmallenergydepositionscanbemeasuredbyelectronic,bolometric,andscintillationtechniques.Thenumberofexperimentalprojectsistoolargetoevenlistthemhere[22].

Thecurrentlimitsalreadydigintothesupersymmetricparameterspace(Fig.3).TheDAMA/NaIexperimenthasactuallyreportedaWIMPsigna-ture[30]whichwouldpointtoneutralinosjustbelowtheirpreviousexclusionrange[31].Thesignificanceofthisresultisverylow,andtentativesignalsareboundtoappearjustbelowthepreviousexclusionrange.Still,thegoodnewsisthatthisdetectioncouldbetrueinthesensethatonehasreachedthesensitivitynecessarytofindsupersymmetricdarkmatter.Inthenearfuturethelarge-scalecryogenicdetectorsCRESST[28]andCDMS[29]willexploreavastspaceofWIMP-nucleoncross-sections(Fig.3).

Fig.3.Exclusionrangeforthespin-independentWIMPscatteringcrosssectionpernucleonfromtheNaIexperiments[23,24]andthegermaniumdetectors[25].Alsoshownistherangeofexpectedcountingratesfordark-matterneutralinosintheminimalsupersymmetricstandardmodel(MSSM)withoutuniversalscalarmassunification[26,27].Thesearchgoalsfortheupcominglarge-scalecryogenicexperimentsCRESST[28]andCDMS[29]arealsoshown,whereCDMSislocatedatashallowsiteatStanford,butwillimproveitssensitivityaftertheplannedmovetoadeepsiteintheSoudanmine.

6G.G.Raffelt

3NeutrinoAstronomy

IndirectmethodstosearchforWIMPsrelyontheirannihilationinthegalactichaloorinthecenteroftheSunorEarthwhereWIMPscanbetrapped[20].ThesearchforGeV–TeVneutrinosfromtheSunorEarthintheKamiokande,Baksan,andMACROdetectors[32]alreadytouchthepa-rameterrangerelevantforneutralinodarkmatter[33].Neutrinotelescopesarethuscompetitivewithdirectdark-mattersearches,whereitdependsondetailsofthesupersymmetricmodelswhichapproachhasabetterchanceoffindingneutralinos.Roughly,awateroriceCherenkovdetectorrequiresakm3volumetobecompetitivewiththeCDMS-Soudansearchgoal.

Afterthesaddemiseofthedeep-seaDUMANDprojectakm3neutrinotelescopehasagaincomewithinrealisticreachafterthebreathtakingprogressinthedevelopmentoftheAMANDAiceCherenkovdetectoratthesouthpole[34].ThelakeBaikalwaterCherenkovdetector[37]isanotheropera-tionalneutrinotelescope,butprobablyitcannotreachthekm3size.Theprospectsofthedeep-seaprojectsNESTOR[35]andANTARES[36]intheMediterraneandependontheoutcomeoftheircurrent“demonstrator”phase.Eitherway,aftertheexplosivedevelopmentofsolarandatmosphericneutrinoobservatories(MeV–GeVenergies),high-energyneutrinoastronomyissettobecomearealityintheverynearfuture.

Besidesthesearchfordarkmatter,neutrinoastronomyaddressesanotheroldandenigmaticastrophysicalproblem,theoriginofcosmicrayswhichengulftheEarthwithenergiesupto∼1020eV.Theyconsistofprotonsandnucleiwhichmustbeacceleratedsomewhereintheuniverse.Whenevertheyrunintostufftheyproducepionsandthusneutrinosandphotonsinroughlyequalproportions(“cosmicbeamdumps”).Becausetheuniverseisopaquetophotonswithenergiesexceedingafew10TeVduetopairproductiononthecosmicmicrowavebackground,andbecausechargedparticlesaredeflectedbymagneticfields,high-energyneutrinoastronomyoffersauniqueobservationalwindowtotheuniverse,andespeciallyachancetoidentifythesitesofcosmic-rayacceleration[38].

4TeVγ-RayAstronomy

Perhapsthemostattractivesitesforthecosmic-rayaccelerationareactivegalacticnuclei(AGN)whicharelikelypoweredbyaccretingblackholes.Theseobjectstendtoejecthugejetsinoppositedirections;foranestimateoftheexpectedneutrinofluxseeRef.[39].Ifthisisindeedthecaseonewouldequallyexpecthigh-energyγ-raysfromthesesources.Remarkably,forthepastfewyearsTeVγ-rayshaveindeedbeenobserved[40,41,42]fromthetwonearby(∼300millionlight-years)AGNsMarkarian421and501whichhavejetspointingtowardEarth.

PL8:Astro-ParticlePhysics7

Untilrecentlyγ-rayastronomyreachedonlyupto∼20GeVbecausethelowfluxesathigherenergiesrequireforbiddinglylargesatellites.Theobser-vationalbreak-throughintheTeVrangearosefromImagingAirCherenkovTelescopes(IACTs)ontheground[43].Ahigh-energyγ-rayhitstheupperatmosphereatanaltitudeof∼16kmandproducesanelectromagneticshowerwhichinturnproducesCherenkovlight.Witharelativelycrudetelescopeonecanthustakeanimageoftheshower.Theaxesofthecigar-shapedshowerimagesofmanyγ-raysintersectinonepointwhichcorrespondstotheloca-tionofthesourceintheskyandthusallowsonetodiscriminateagainstthemuchlargerbutisotropicfluxofhadroniccosmicrays.Anumberofgalacticsourcesarenowroutinelyobserved,notablytheCrabnebula,whichisseenatenergiesupto50TeVandservesasa“calibration”source.Thereremainsanunexploredspectralrangebetweenabout20and300GeVwhichrequiresmuchlargerIACTsthanarecurrentlyavailable.

TheMarkariansarethefirstextragalacticsourcesintheTeVγ-sky.Theirbehaviorisquitetantalizinginthattheyarehugelyvariableonsub-hourtimescales(Fig.4).Moreover,Mrk501essentially“switchedon”fromastateoflowactivitywithabout0.1oftheCrabfluxin1995,about0.3in1996,to

Background subtracted count rate [ mHz ]160140120100806040200MarchApril1 Craba)1617181920217891011121314Date in March/April 1997April 12April 13April 142001501005002b)345234523Time of observation [ UTC ]45Fig.4.DetectionrateoftheactivegalaxyMrk501intheHEGRAstereoscopicsystemofImagingAirCherenkovTelescopesonanightbynightbasis,a)forthewholedatasetandb)forthelast3nightsin5min.intervals[42].Thedashedlinesindicatetheaveragepernight,thedottedlineshowstheCrabdetectionrateasareference.Errorsarestatisticalonly.

8G.G.Raffelt

about10timestheCrabsinceFebruary1997.Ifthehigh-energyphotonsareproducedbyaprotonbeamor,say,photonupscatteringbyacceleratedelectronsisbynomeansobvious.Onewillneedneutrinotelescopestodecidethisquestionandthustounderstandtheseintruigingobjects.

5Summary

Experimentstoidentifythephysicalnatureofthegalacticdarkmatterhaverecentlymadegreatstrides.ThemicrolensingsearchesforMACHOshaveobservedaroundadozencandidatestowardtheLargeMagellanicCloud,butaninterpretationoftheseeventsisquitepuzzlinginthattheirbest-fitmassputsthemintothewhite-dwarfcategorywhichishighlyimplausible.ThisyearafirstcandidatetowardtheSmallMagellanicCloudhasbeenreported,withanevenlargerapparentmass.Fromvirtuallyanycosmologicalperspec-tivecolddarkmatterremainsthefavoredhypothesisforthedominantmassfractionoftheuniverse.Full-scalesearchesforthemostfavoredparticlecan-didates(axionsandWIMPs)areinprogress.OnecanhuntWIMPsalsobysearchingfortheirannihilationproductsintheformofhigh-energyneutrinosfromtheSunorthecenteroftheEarth.Withakm3wateroriceCherenkovdetectoronecouldcoverasignificantfractionoftheparameterspaceforsu-persymmetricdarkmatter.TheimpressiveprogressoftheAMANDAsouthpoledetectorandtheappearanceofnewdeep-seaprojects(ANTARESandNESTOR)bodewellforthisapproach—akm3detectorcouldbeupandrunningbeforetheLHC.High-energyneutrinoastronomyhasotherintruig-ingobjectives,notablysearchingforthesitesofcosmic-rayacceleration.ThebreathtakingrecentobservationsofTeVγ-raysfromthetwonearbyactivegalaxiesMarkarian421and501havezoomedthisphysicstargetintosharperfocus.Whetherornotactivegalacticnucleiaccelerateprotonsisaquestionthatcanbeansweredonlybyneutrinoastronomy.Acknowledgments

Thisworkwassupported,inpart,bytheDeutscheForschungsgemeinschaftundergrantNo.SFB375.

References

[1]M.Nakahata,PL11,theseProceedings.

[2]V.Trimble,Annu.Rev.Astron.Astrophys.25(1987)425.S.Tremaine,

PhysicsToday45:2(1992)28.

[3]E.W.KolbandM.S.Turner,TheEarlyUniverse(Addison-Wesley,Red-woodCity,1990).G.B¨orner,TheEarlyUniverse,2ndedition(Springer,Berlin,1992).

PL8:Astro-ParticlePhysics9

[4]B.J.Carr,CommentsAstrophys.14(1990)257;Annu.Rev.Astron.As-trophys.32(1994)531.B.J.CarrandM.Sakellariadou,Fermilab-Pub-97-299-A,Astrophys.J.(submitted1997).D.J.HegyiandK.A.Olive,Astrophys.J.303(1986)56.[5]B.Paczy´nski,Astrophys.J.304(1986)1.

[6]C.Alcocketal.(MACHOCollab.),Nature365(1993)621;Phys.Rev.

Lett.74(1995)2867.E.Aubourgetal.(EROSCollab.),Nature365(1993)623;Astron.Astrophys.301(1995)1.R.Ansarietal.(EROSCollab.),Astron.Astrophys.314(1996)94.

[7]C.Renaultetal.(EROSCollab.),Astron.Astrophys.324(1997)L69.[8]C.Alcocketal.(MACHOCollab.),Astrophys.J.471(1996)774;As-trophys.J.486(1997)697.

[9]K.Sahu,Nature370(1994)275.H.S.Zhao,astro-ph/9606166,9703097.

C.Alcocketal.(MACHOCollab.),Astrophys.J.490(1997)L59.A.Gould,astro-ph/9709263.N.Evansetal.,astro-ph/9711224.E.Gatesetal.,astro-ph/9711110.D.ZaritskyandD.Lin,astro-ph/9709055.[10]C.Alcocketal.(MACHOCollab.),Astrophys.J.491(1997)L11.

N.Palanque-Delabrouille(EROSCollab.),astro-ph/9710194.

[11]A.P.S.CrottsandA.B.Tomaney,Astrophys.J.473(1996)L87.R.An-sarietal.(AGAPECollab.),Astron.Astrophys.324(1997)843.

[12]J.Yokoyama,Astron.Astrophys.318(1997)673.K.Jedamzik,Phys.

Rev.D55(1997)R5871.J.C.NiemeyerandK.Jedamzik,astro-ph/9709072.

[13]R.D.PecceiandH.R.Quinn,Phys.Rev.Lett.38(1977)1440;Phys.

Rev.D16(1977)1791.S.Weinberg,Phys.Rev.Lett.40(1978)223.F.Wilczek,Phys.Rev.Lett.40(1978)279.J.E.Kim,Phys.Rept.150(1987)1.H.-Y.Cheng,Phys.Rept.158(1988)1.

[14]R.L.Davis,Phys.Lett.B180(1986)225.R.A.BattyeandE.P.S.Shel-lard,Phys.Rev.Lett.73(1994)2954;(E)ibid.76(1996)2203.D.HarariandP.Sikivie,Phys.Lett.B195(1987)361.C.HagmannandP.Sikivie,Nucl.Phys.B363(1991)247.

[15]P.Sikivie,Phys.Rev.Lett.51(1983)1415;Phys.Rev.D32(1985)2988.[16]C.Hagmann,P.Sikivie,N.S.Sullivan,D.B.Tanner,Phys.Rev.D42

(1990)1297.

[17]W.U.Wuenschetal.,Phys.Rev.D40(1989)3153.

[18]C.Hagmannetal.,Nucl.Phys.Proc.Suppl.51B(1996)209.

[19]I.Ogawa,S.MatsukiandK.Yamamoto,Phys.Rev.D53(1996)R1740.[20]G.Jungman,M.KamionkowskiandK.Griest,Phys.Rept.267(1996)

195.

[21]M.W.GoodmanandE.Witten,Phys.Rev.D31(1985)3059.

[22]J.Primack,D.SeckelandB.Sadoulet,Annu.Rev.Nucl.Part.Sci.38

(1988)751.P.F.SmithandJ.D.Lewin,Phys.Rept.187(1990)203.D.O.Caldwell,Mod.Phys.Lett.A5(1990)1543;Proc.TAUP97,tobepublished.N.E.Booth,B.CabreraandE.Fiorini,Annu.Rev.Nucl.Part.Sci.46(1996)471.A.Watson,Science275(1997)1736.

10G.G.Raffelt

[23]P.F.Smithetal.,Phys.Lett.B379(1996)299.J.J.Quenby,Astropart.

Phys.5(1996)249.

[24]R.Bernabeietal.,Phys.Lett.B389(1996)757.

[25]D.Reusseretal.,Phys.Lett.B255(1991)143.E.Garciaetal.,Phys.

Rev.D51(1995)1458.M.Becketal.,Phys.Lett.B336(1994)141.[26]P.Gondolo,privatecommunication(1997).[27]L.Bergstr¨omandP.Gondolo,Astropart.Phys.5(1996)263.A.Bottino,

F.Donato,G.MignolaandS.Scopel,Phys.Lett.B402(1997)113.J.Edsj¨oandP.Gondolo,Phys.Rev.D56(1997)1879.

[28]M.Sistietal.,in:Proc.7thInt.WorkshoponLowTemperatureDe-tectors(LTD-7),27July–2August1997,Munich,Germany,ed.byS.Cooper(Max-Planck-Institutf¨urPhysik,Munich,1997).

[29]S.W.Nametal.,in:Proc.7thInt.WorkshoponLowTemperatureDe-tectors(LTD-7),27July-2August1997,Munich,Germany,ed.byS.Cooper(Max-Planck-Institutf¨urPhysik,Munich,1997).

[30]R.Bernabeietal.,astro-ph/9710290,tobepublishedinProc.TAUP97.[31]A.Bottino,F.Donato,N.FornengoandS.Scopel,astro-ph/9709292

and9710295.

[32]M.Morietal.(KamiokandeCollab.),Phys.Rev.D48(1993)5505.

M.M.Bolievetal.(Baksantelescope),in:Proc.TAUP95,ed.byA.Morales,Nucl.Phys.B(Proc.Suppl.)48(1996)83.M.Ambrosioetal.(MACROCollab.),PreprintINFN-AE-97-23.

[33]M.Kamionkowskietal.,Phys.Rev.Lett.26(1995)5174.V.Berezinskii,

etal.,Astropart.Phys.5(1996)333.L.Bergstr¨om,J.Edsj¨oandP.Gondolo,Phys.Rev.D55(1997)1765.[34]L.Berstr¨om,astro-ph/9612122,Proc.IdentificationofDarkMatter,

Sheffield,UK,Sept.1997.F.Halzen,astro-ph/9707289.

[35]E.G.Anassontzisetal.(NESTORCollab.)PreprintDFF-283-7-1997,

Jul1997.Proc.18thInternationalSymposiumonLepton-PhotonInter-actions(LP97),Hamburg,Germany,28July–1Aug.1997.[36]ANTARESCollaboration,Proposal,astro-ph/9707136.

[37]V.A.Balkanov(BaikalCollab.),astro-ph/9705017,Proc.XXXIIRen-contresdeMoriond,LesArcs,France,Jan.18–25,1997.

[38]T.K.Gaisser,astro-ph/9707283,Proc.OECDMegascienceForumWork-shop,Taormina,Italy,May22–23,1997.F.Halzen,astro-ph/9605014,Proc.VenitianNeutrinoConference,Feb.1996.[39]F.HalzenandE.Zas,Astrophys.J.488(1997)669.

[40]M.Punchetal.,Nature358(1992)477.A.D.Kerricketal.,Astrophys.

J.438(1995)L59.D.Petryetal.,Astron.Astrophys.311(1996)L13.[41]J.Quinnetal.,Astrophys.J.456(1996)L83.

[42]F.Aharonianetal.(HEGRACollab.),Astron.Astrophys.327(1997)

L5.M.Cataneseetal.,astro-ph/9707179.

[43]J.V.JelleyandT.C.Weekes,Sky&Telescope,Sept.1995,pg.20.

因篇幅问题不能全部显示,请点此查看更多更全内容