数学说课稿初中 篇1
一、教材分析:
(一) 教材的地位与作用
从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。
从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;
勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。
根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中【情感态度】方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。 (二)重点与难点
为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。
限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点。 我将引导学生动手实验突出重点,合作交流突破难点。 二、学情分析
初二学生已具备一定的 分析,归纳的能力和运用数学的思想意识对于勾股定理的得出,需要学生通过动手操作,在观察的基础上,大胆猜想数学结论。但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。 三、教学与学法分析 教学方法
叶圣陶说过\"教师之为教,不在全盘授予,而在相机诱导。\"因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。 学法指导
为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。
四、教学过程
首先,情境导入 激问设疑
给出生活中的实际问题,调动学生兴趣,启迪学生思维,激发学生创新热情和和情感体验。是学生带着好奇心开始本节课的学习。
其次,自主探究,获取新知
勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。 1. 追溯历史 解密真相
让学生欣赏传说故事:相传2500年前,毕达格拉斯在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系。通过故事使学生明白:科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。 这样,一方面激发学生的求知欲望,另一方面,也对学生进行了学习方法指导和解决问题能力的培养。 2.动手操作----探求新知
通过对地板图形中的等腰直角三角形到一般直角三角形中三边关系的探究,让同学们体验由特殊到一般的探究过程,学习这种研究方法。
在这一过程中,学生充分利用学具去尝试解决,力求让学生自己探索,先在小组内交流,然后在全班交流,尽量学习更多的方法。
这里首先引导学生观察图1、图2、图3,让学生计算每个图中的三个正方形的面积,(注意:学生可能有不同的方法,只要正确合理,各种方法都应给予肯定)。然后通过探究S1、S2、S3之间的关系,进而猜想、发现得出勾股定理,并用自己的语言表达,这样做不仅有利于学生主动参与探索,感受学习的过程,培养学生的语言表达能力,体会数形结合的思想;也有利于突破难点,让学生体会到观察、猜想、归纳的思路,让学生的分析问题、解决问题的能力在无形中得到提高,这对以后的学习有帮助。 从上面低起点的问题入手,有利于学生参与探索。学生很容易发现,在等腰三角形中存在如下关系。巧妙的将面积之间的关系转化为边长之间的关系,体现了转化的思想。观察发现虽然直观,但面积计算更具说服力。将图形转化为边在格线上的图形,以便于计算图形面积,体现了数形结合的思想。学生会想到用\"数格子\"的方法,这种方法虽然简单易行,但对于下一步探索一般直角三角形并不适用,具有局限性。因此我引导学生利用\"割\"
和\"补\"的方法求正方形C的面积,为下一步探索复杂图形的面积做铺垫。
3、自己动手,拼出弦图
让同学们拿出了提前准备好的四个全等的边长为a、b、c的直角三角形进行拼图,小组活动,拼出自己喜爱的图形,但有一个前提是所拼出的图形必须能够用等积法证明勾股定理。此时已经是把课堂全部还给了学生,让他们在数学的海洋中驰骋,提供这种学习方式就是为了让孩子们更加开阔,更加自主,更方便于他们到广阔的海洋中去寻找宝藏,学生们拼得很好,并且都给出了正确的证明,在黑板上尽情地展示了一番。
突破等腰直角三角形的束缚,探索在一般情况下的直角三角形是否也存在这一结论呢?体现了\"从特殊到一般\"的认知规律。在求正方形C的面积时,学生将展示\"割\"的方法, \"补\"的方法,有的学生可能会发现平移的方法,旋转的方法,对于这两种新方法教师应给于表扬,肯定学生的研究成果,培养学生的类比、迁移以及探索问题的能力。
以上三个环节层层深入步步引导,学生归纳得到命题,从而培养学生的合情推理能力以及语言表达能力。
感性认识未必是正确的,推理验证证实我们的猜想。 合作交流,讲述论证
教材中直接给出\"赵爽弦图\"的证法对学生的思维是一种禁锢,我创新使用教材,利用拼图活动解放学生的大脑,让学生发挥自己的聪明才智证明勾股定理。这是教学的难点也是重点,给学生充分的自主探索的时间与空间,让学生的思维在相互讨论中碰撞、在相互学习中完善。同时我深入到学生中间,观察学生探究方法接受学生的质疑,对于不同的拼图方案给予肯定。从而体现出\"学生是学习的主体,教师是组织者、引导者与合作者\"这一教学理念。学生会发现两种证明方案。
方案1为赵爽弦图,学生讲解论证过程,再现古代数学家的探索方法。
方案2为学生自己探索的结果,论证之巧较方案1有异曲同工之妙。整个探索过程,让学生经历由表面到本质,由合情推理到演绎推理的发掘过程,体会数学的严谨性。对比\"古\"、\"今\"两种证法,让学生体会\"吹尽黄沙始到金\"的喜悦,感受到\"青出于蓝而胜于蓝\"的自豪感。教师对\"勾、股、弦\"的含义以及古今中外对勾股定理的研究做一个介绍,使学生感受数学文化,培养民族自豪感和爱国主义精神。增强了学生学习数学的兴趣和信心。
我按照\"理解—掌握—运用\"的梯度设计了如下四组习题。 (1) 体会新知,初步运用(2)对应难点,巩固所学;(3)考查重点,深化新知;(4)解决问题,感受应用
最后、温故反思 任务后延
在课堂接近尾声时,我鼓励学生从\"四基\"的要求对本节课进行小结。进而总结出一个定理、二个方案、三种思想、四种经验。 然后布置作业,分层作业体现了教育面向全体学生的理念。 五、板书设计
板书勾股定理,进而给出字母表示,培养学生的符号意识。 六、学习评价
本课意在创设和谐的乐学气氛,始终面向全体学生,\"以学生的发展为本\"的教育理念,课堂教学充分体现学生的主体性,给学生留下最大化的思维空间注重数学思想方法的渗透,从一般到特殊从特殊回归到一般的数学思想方法。重视数学式教育,激发学生的爱国情操,用数学知识解决生活中的实际问题,在这个过程中,很多时候需要老师帮助学生去理解和转化,而更多时候需要学生自己去探索,尝试,得出正确结论。
数学说课稿初中 篇2
今天我说课的内容是人教版七年级上册1.2.4绝对值内容。 首先,我对本节教材进行一些分析: 一、教材分析(说教材):
(一)、教材所处的地位和作用:
本节内容在全书及章节的地位是:《绝对值》是七年级数学教材上册1.2.4节内容。在此之前,学生已学习了有理数,数轴与相反数等基础内容,这为过渡到本节的学习起着铺垫作用。绝对值不仅可以使学生加深对有理数的认识,还为以后学习两个负数的比较大小以及有理数的运算作好必要的准备!所以说本讲内容在有理数这一节中,占据了一个承上启下的位置。 (二)、教育教学目标:
根据新课标的要求及七年级学生的认知水平我特制定的本节课的教学目标如下: 1、知识目标:
1)使学生了解绝对值的表示法,会计算有理数的绝对值。 2)能利用数形结合思想来理解绝对值的几何定义;理解绝对值非负的意义。
3)能利用分类讨论思想来理解绝对值的代数定义;理解字母a的任意性。 2、能力目标:
通过教学初步培养学生分析问题,解决实际问题,读图分析、收集处理信息、团结协作、语言表达的能力,以及通过师生双边
活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力。 3、思想目标:
通过对绝对值的教学,让学生初步认识到数学知识________于实践,引导学生从现实生活的经历与体验出发,激发学生对数学问题的兴趣,使学生了解数学知识的功能与价值,形成主动学习的态度。
(三):重点,难点以及确定的依据:
本课中绝对值的两种定义是重点,绝对值的代数定义是本课的难点,其理论依据是如何突破绝对值符号里字母a的任意性这一难点,由于学生年龄小,解决实际问题能力弱,对数学分类讨论思想理解难度大。
下面,为了讲清重难点,使学生能达到本节课设定的教学目标,我再从教法和学法上谈谈: 二、教学策略(说教法) (一)、教学手段:
由于七年级学生的理解能力和思维特征,他们往往需要依赖直观具体形象的图形的年龄特点,以及七年级学生刚刚学习有理数中的正负数,相反数,对正负数,相反数的概念理解不一定很
深刻,许多学生容易造成知识遗忘,也为使课堂生动、有趣、高效,特将整节课以观察、思考、讨论贯穿于整个教学环节之中,采用启发式教学法和师生互动式教学模式,注意师生之间的情感交流,并教给学生多观察、动脑想、大胆猜、勤钻研的研讨式学习方法。教学中积极利用多媒体课件,向学生提供更多的活动机会和空间,使学生在动脑、动手的过程中获得充足的体验和发展,从而培养学生的数形结合的思想。
为充分发挥学生的主体性和教师的主导辅助作用,教学过程中我设计了七个教学环节:
1 、温故知新,激发情趣 2 、得出定义,揭示内涵 3 、手脑并用,深入理解 4 、启发诱导,初步运用 5 、反馈矫正,注重参与 6 、归纳小结,强化思想 7 、布置作业,引导预习 (二)、教学方法及其理论依据:
坚持以学生为主体,以教师为主导的原则,即以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后的原则,根据七年级学生的心理发展规律,联系实际安排教学内容。采用学生参与程度高的学导式讨论教学法。在学生看书、讨论基础上,在教师启发引导下,运用问题解决式教学法,师生交谈法、问答法、课堂讨论法,引导学生来理解教材中的理论知识。在采用问
答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。有效地开发各层次学生的潜在智能,力求使每个学生都能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践,学以致用,落实教学目标。
三:学情分析:(说学法)
1、知识掌握上,七年级学生刚刚学习有理数中的相反数,对相反数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述。
2、学生学习本节课的知识障碍。学生对绝对值两种概念,不易理解,容易出错,所以教学中教师应予以简单明白、深入浅出的分析。
3、由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用多媒体课件,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
4、心理上,学生对数学课的重视与兴趣,老师应抓住这有利因素,引导学生认识到数学课的科学性,学好数学有利于其他学科的学习以及学科知识的渗透性。
最后我来具体谈一谈这一堂课的教学过程: 四、 教学程序设计
(一)、温故知新,激发情趣:
首先打出第一张幻灯片复习提问:什么叫做相反数?学生回答后让大家讨论:你能找出互为相反数的两个数在数轴上表示的点的共同特点吗?学生会积极回答第一个问题,但第二个问题学生可能难以准确回答,于是打出第二张幻灯片引导学生仔细观察,认真思考。从而引出课题:绝对值。结合实例使学生以轻松愉快的心情进入了本节课的学习,也使学生体会到数学________于实践,同时对新知识的学习有了期待,为顺利完成教学任务作了思想上的准备。
(二)、得出定义,揭示内涵:
由于学生是第一次接触绝对值这样比较深奥的数学名词,所以我利用数轴在第三张幻灯片里直接给出绝对值的几何定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,(absolute value)这个定义学生接受起来比较容易。
给出定义后引导学生讨论:定义里的数a可以表示什么样的数?
(通过教师的亲切的语言启发学生,以培养师生间的默契)通过讨论由师生共同得到:绝对值定义里的数a可以是正数,负数和0。
然后再回到第一张幻灯片里提出的问题:互为相反数的两个数的绝对值有什么关系?
(三)、手脑并用,深入理解:
1、在上一环节与学生一起理解了绝对值的定义后,我再提出问题:如何由文字语言向数学符号语言的转化,即如何简单地标记绝对值,而不用汉字?在此不用提问学生,采取自问自答形式给出绝对值的记法。
2、为进一步强化概念,在对绝对值有了正确认识的基础上,请学生做教材的课堂练习第一题,写出一些数的绝对值。可以请学生起立回答。我就学生的回答情况给出评价,如很好很规范老师相信你,你一定行等语言来激励学生,以促进学生的发展;并再次强调绝对值的定义。
3、在完成第一题的练习后,我又给出一新的幻灯片,并提出问题:议一议一个数的绝对值与这个数有什么关系?启发学生
举一些实际的例子来发现规律,并总结规律。从而引出绝对值的第二个定义。
(四)、启发诱导,初步运用:
有了绝对值的两个定义后,我安排了10道不同层次的判断题让学生思考。特别注重对于不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。
(五)、反馈矫正,注重参与:
为巩固本节的教学重点我再次给出三道问题:
1)绝对值是7的数有几个?各是什么?有没有绝对值是-2的数?
2)绝对值是0的数有几个?各是什么? 3)绝对值小于3的整数一共有多少个?
先让学生通过小组讨论得出结果,通过以上练习使学生在掌握知识的基础上达到灵活运用,形成一定的能力。
视学生的反馈情况以及剩余时间的多少我还预备了五道课堂升华的思考题,再次强化训练,启发学生的思维。 (六)、归纳小结,强化思想:
(七)、布置作业,引导预习:
1、全体学生必做课本习题 1.2 3,4,5 ,10。 2、选作两道思考题:
(1)求绝对值不大于2的整数;(2)已知x是整数,且2.57, 求x.
总之,在教学过程中,我始终注意发挥学生的主体作用,让学生通过自主、探究、合作学习来主动发现结论,实现师生互动,通过这样的教学实践取得了良好的教学效果,我认识到教师不仅要教给学生知识,更要培养学生良好的数学素养和学习习惯,让学生学会学习,才能使自己真正成为一名受学生欢迎的好教师。 以上是我对本节课的设想,不足之处请老师们多多批评、指正,谢谢!
数学说课稿初中 篇3
各位评委:早上好
今天我说课的题目是 ,这节课所选用的教材为北师大版义务教育课程标准八年级 教科书。 一、 教材分析 1、教材的地位和作用
本节教材是初中数学____ 年级 册的内容,是初中数学的重要内容之一。一方面,这是在学习了____ 的基础上,对____的进一步深入和拓展;另一方面,又为学习____ 等
知识奠定了基础,是进一步研究____的工具性内容。因此本节课在教材中具有承上启下的作用。 2、学情分析
学生在此之前已经学习了____,对____已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于____的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。 3、教学重难点
根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为: 难点确定为: 二、 教学目标分析
根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标: 1. 知识与技能目标:
2. 过程与方法目标: 3. 情感态度与价值目标: 三、 教学方法分析
本节课我将采用启发式、讨论式结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。 另外,在教学过程中,采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习的兴趣,增大教学容量,提高教学效率。
四、教学过程分析
为有序、有效地进行教学,本节课我主要安排以下教学环节: (1) 复习就知,温故知新
设计意图:建构主义主张教学应从学生已有的知识体系出发,____是本节课深入研究____的认知基础,这样设计有利于引导学生顺利地进入学习情境。 (2) 创设情境,提出问题
设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习的兴趣和求知欲望。
通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节——— (3) 发现问题,探求新知
设计意图:现代数学教学论指出,教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过 观察分析、独立思考、小组交流 等活动,引导学生归纳。 (4) 分析思考,加深理解
设计意图:数学教学论指出, 数学概念(定理等) 要明确其 内涵和外延(条件、结论、应用范围等) ,通过对 定义 的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。 通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第____环节。 (5) 强化训练,巩固双基
设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1……例2……,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。
(6) 小结归纳,拓展深化
小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体地位,让学生畅谈本节课的收获. (7)当堂检测 对比反馈 (8) 布置作业,提高升华
以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。
以上是我对本节课的见解,不足之处敬请各位评委谅解 !
数学说课稿初中 篇4
尊敬的各位评委、老师:
上午好!我是(19)号说课者,今天我说课的内容是 平行四边形的判定 。所选用的教材是经全国中小学教材审定委员会,20__年初审通过的,人教版义务教育课程,标准实验教科书。对
于本节课。我将根据去年国家教育部颁布的,新数学课堂标准的理念,以教什么,怎样教,为什么这样教为思路,从说教材、说教法,说学法,说教学过程及教学反思等五个方面向大家介绍一下,我对本节课的理解与设计。 一、说教材 1.地位和作用
本节教材是人教版,初中数学八年级下册第 19 章第 1 节的内容,是初中数学的重要内容之一。 平行四边形 是一种重要的数学思想,在实际生活中有着广泛的应用,是初中教学的重点和难点,在教材中有举足轻重的地位。本节课所学内容,是在学习了 平行四边形的性质 的基础上,对 平行四边形的判定 进一步拓展;另一方面又为 其他四边形 的教学打下基础,做好铺垫,在教学中起着承前启后的作用。
<新的数学教学大纲明确要求,判断,对此本节课的> 2.教学重点和难点
本节课的重点是:平行四边形的判定定理及应用
难点是:平行四边形的判定的推导过程(这点要求比较难) 我将通过问题情境的设计,课堂实验研讨,来引导学生发现、分析和解决问题。
<根据去年国家教育部颁布的,新数学课堂标准的理念,学生学习的目标应将知识与技能、方法与过程、情感态度价值观这三方面融为一体,为了落实这几点,我们本节课的教学目标如下> 3.教学目标 1)掌握
2)探索,由此发现充满着探索性和挑战性。(方法与过程) 3)经过自主探索和合作交流,敢于发表自己的观点,能从交流中获益。(情感态度价值观) 这样制定教学目标,让学生亲身经历将实际问题抽象成数学问题,并进行理解与应用的过程,增加他们对问题的感性认识。通过推理论证,提高学生的理性认识,培养学生良好的个性品质(这包括大胆猜想、勇于探索、创新精神、顽强的学习毅力等)。
<总之,我这节课更注重学生学习方式的转变,变接受式学习为自主式学习、合作式学习、探究式学习。针对这节课我采用以下教学方法> 二、说教法
情境教学法、课堂研讨法
让学生处于具体的教学情境之中,把抽象的数学知识,适当的形象化,这就相当于为学生提供一个场所,从多种感观获取信息,体验我们的数学活动。 可以从以下三方面得到体验: 1)培养学生的自学能力
2)落实学生的主体地位,促进学生的主动发展 3)为培养学生的创新意识与创新能力奠定基础
从整体课堂来看,我们这节课很关注学生的发展,古人说:“学贵有方” 三、说学法
老师传授给学生的不应只是知识内容,更重要的是,指导学生一些数学的学习方法。我遵循“教师为主导、学生为主体、质疑为主线”的教学思路,进行学法的指导。指导学生如何将实际问题转化为数学问题,明白数学与人类的密切关系,指导学生通过类比、猜想、推理等思维进行教学。
<在我的课堂教学中,我会以学生的发展为本,以学生的活动为主线,让学生充分参与到课堂活动中来,为了落实这几点,我按以下5个阶段来,完成本课教学过程> 四、说教学过程
1阶段:创设情境、引入新课
我将灵活运用温故而知新,承接前后章,展示情境,结合实际生活,引入新课。
2阶段:新课教学(通过合作性学习进行教学。心理学研究表明,在合作性学习中,学生不再是学习上的竞争对手,而是共同提高的合作者,这不仅对他们的学业会有帮助,在人格的培养上也很有可取之处。) 3阶段:课堂实践
我将通过:首先和学生们一起议一议(平行四边形性质的简单利用)
最后再和学生们共同完成练一练(随堂练习,基础训练、创新训练)
4阶段:课堂小结(让学生谈谈本节学到什么、收获什么,教师点评,以达到加深知识的理解)
5阶段:布置作业(达到复习巩固新知识的目的) 五、教学反思
本节课我遵循“教师为主导、学生为主体、质疑为主线”的教学思路,培养学生的主动学习能力、动手操作能力、逻辑推理能力等。通过课堂学习,及时发现学生,在学习探究过程中遇到的问题,给予指导帮助,从而维持学生学习的积极性。以上是我
对本节课的理解,不足之处,请各位评委老师指正。我的说课完毕,谢谢大家!
数学说课稿初中 篇5
一、教材分析 (一)教材地位
这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。 (二)教学目标
1、知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题。
2、过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想。
3、情感态度与价值观: 激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学。 (三)教学重点
经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。
教学难点:用面积法(拼图法)发现勾股定理。
突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解。
二、教法与学法分析 学情分析:
七年级学生已经具备一定的观察、归纳、猜想和推理的能力.他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够。
另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强. 教法分析:
结合七年级学生和本节教材的特点,在教学中采用“问题情境————建立模型————解释应用———拓展巩固”的模式, 选择引导探索法。
把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。
学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人。 三、教学过程设计 (一)创设情境,提出问题 (1)图片欣赏勾股定理数形图 1955年希腊发行美丽的勾股树 20__年国际数学的一枚纪念邮票 大会会标
设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值。
(2)某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6。5米长的云梯,如果梯子的底部离墙基的距离是2。5米,请问消防队员能否进入三楼灭火?
设计意图:以实际问题为切入点引入新课,反映了数学________于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节。
(二)实验操作模型构建 1、等腰直角三角形(数格子) 2、一般直角三角形(割补)
问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系?
设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想。
问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗?(割补法是本节的难点,组织学生合作交流) 设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高。 通过以上实验归纳总结勾股定理。
设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊—— 一般的认知规律。
(三)回归生活应用新知
让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心。 (四)知识拓展巩固深化 基础题,情境题,探索题。
设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展。知识的运用得到升华。
基础题: 直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗?
设计意图:这道题立足于双基.通过学生自己创设情境 ,锻炼了发散思维。
情境题:小明妈妈买了一部29英寸(74厘米)的电视机。小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。你同意他的想法吗?
设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。
探索题: 做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明。
设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力。 (五)感悟收获布置作业 这节课你的收获是什么? 作业:
1、课本习题2.1
2、搜集有关勾股定理证明的资料。 四、板书设计 探索勾股定理
如果直角三角形两直角边分别为a,b,斜边为c,那么 设计说明:
1、探索定理采用面积法,为学生创设一个和谐、宽松的情境,让学生体会数形结合及从特殊到一般的思想方法。
2、让学生人人参与,注重对学生活动的评价,一是学生在活动中的投入程度;二是学生在活动中表现出来的思维水平、表达水平。
图文搜集自络,如有侵权,请联系删除。
铁树老师面试辅导,喜马拉雅app—主播—教师面试大杂烩
数学说课稿初中 篇6
教学目的:
使学生掌握正方形的定义、性质和判定,会用正方形的概念和性质进行有关的论证和计算,理解正方形与平行四边形、矩形、菱形的内在联系和区别,进一步加深对“特殊与一般的认识” 教学重点: 正方形的定义. 教学难点:
正方形与矩形、菱形间的关系. 教学方法: 双边合作
如:在教学时可播放转换动画使学生获得生动、形象的可视思维过程,从而掌握判定一个四边形是正方形的方法.为了活跃学生的思维,可以得出下列问题让学生思考: (1)对角线相等的菱形是正方形吗?为什么? (2)对角线互相垂直的矩形是正方形吗?为什么?
(3)对角线垂直且相等的四边形是正方形吗?为什么?如果不是,应该加上什么条件?
(4)能说“四条边都相等的四边形是正方形”吗?为什么? (5)说“四个角相等的四边形是正方形”,对吗? 教学过程:
让学生将事先准备好的矩形纸片,按要求对折一下,裁出正方形纸片.
问:所得的图形是矩形吗?它与一般的矩形有什么不同? 所得的图形是菱形吗?它与一般的菱形有什么不同? 所得的图形在小学里学习时称它为什么图形?它有什么特点?
由此得出正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.
(一)新课
由正方形的定义可以得知:正方形是有一组邻边相等的矩形,又是有一个角是直角的菱形,因此正方形具有矩形的性质,同时又具有菱形的性质.
请同学们推断出正方形具有哪些性质? 性质
(1)正方形的四个角都是直角。 (2)正方形的四条边相等。
性质2、(1)正方形的两条对角线相等。 (2)正方形的两条对角线互相垂直平分。 (3)正方形的每条对角线平分一组对角。
例1 求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形.
已知:四边形ABCD是正方形,对角线AC、BD相交于点O.
数学说课稿初中 篇7
一、教材分析:
《有理数的减法》是北师大版《数学》实验教科书七年级上册第二章第五节的内容。
“数的运算”是“数与代数”学习领域的重要内容,减法是其中的一种基本运算。本课的学习远接小学阶段关于整数、分数(包括小数)的减法运算,近承第四节有理数的加法运算。通过对有理数的减法运算的学习,学生将对减法运算有进一步的认识和理解,为后继诸如实数、复数的减法运算的学习奠定了坚实的基础。
鉴于以上对教学内容在教材体系中的位置及地位的认识和理解,确定本节课的教学目标如下: 1、知识目标:
经历探索有理数的减法法则的过程,理解有理数的减法法则,并能熟练运用法则进行有理数的减法运算。 2、能力目标:
经历由特例归纳出一般规律的'过程,培养学生的抽象概括能力及表达能力;通过减法到加法的转化,让学生初步体会转化、化归的数学思想。 3、情感目标:
在归纳有理数减法法则的过程中,通过讨论、交流等方式进行同伴间的合作学习。
为了实现以上教学目标,确定本节课的教学重点是:有理数的减法法则的理解和运用。教学难点是:在实际情境中体会减法运算的意义并利用有理数的减法法则解决实际问题。 二、学情分析:
我们面对的教学对象是已具备一定知识储备和一定认知能力的个性鲜明的学生,而不是一张“白纸”,因此关注学生的情况对教学是十分有必要的。
在生活中学生经常会进行同类量之间的比较,因此学生对减法运算并不陌生,但这种认识常常流于经验的层面;在小学阶段学生进一步学习了作为“数的运算”的减法运算,但这种减法运算的学习很大程度上的是一种技能性的强化训练,学生对此缺乏理性的认识,很多时候减法仅作为加法的逆运算而存在。因此在教学中一方面要利用这些既有的知识储备作为知识生长的“最近发展区”来促进新课的学习,另一方面要通过具体情境中减法运算的学习,让学生体会减法的意义。
此外,值得注意的是本年龄段的学生学习积极性高,探索欲望强烈,但数学活动的经验较少,探索效率较低,合作交流能力有待加强。因此在教学过程中要做好调控。
三、教法选择及学法指导:
《课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。基于以上理念,结合本节课内容及学生情况,教学设计中采用“引导——发现法”组织教学。其基本程序设计为:创设情境——提出猜想——探索验证——总结归纳——反馈运用。
上述教学程序的实施很大程度上有赖于学生的学习,因此对学生学习方式的指导是十分重要的。本节课应鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生亲历从列举特例到归纳(不完全归纳)出一般的减法法则的全过程,体验知识产生和发展的全过程。 四、过程分析: 教学环节
教 学 活 动 设 计 设 计 说 明 创设情境 自然引入
1、首先与学生互动谈论合肥本地今日的气温,了解合肥今天的最高气温和最低气温。
数学说课稿初中 篇8
一、设计思想:
数学________于生活,数学教学应走进生活,生活也应走进数学,数学与生活
的结合,会使问题变得具体、生动,学生就会产生亲近感、探究欲,从而诱发内在学习潜能,主动动手、动口、动脑。因此,在教学中,我们应自觉地把生活作为课堂,让数学回归生活,服务生活。培养学生的动手能力和创新能力,丰富和发展学生的数学活动经历,并使学生充分体会到数学之趣、数学之用、数学之美。处理好教与学的关系。教师既要做到精讲精练,又要敢于放手引导学生参与尝试和讨论,展开思维活动。根据新教材留给学生一定的思维空间的特点,教师要鼓励学生自己动脑参与探索,让学生有发表意见的机会,绝对不能包办代替,使学生不仅能学会,而且能会学。充分发挥络在课堂教学中的优势,力争促进学生学习方式的转变,由被动听讲式学习转变为积极主动的探索发现式学习。数学问题生活化,主导主体相结合,发挥媒体技术优势,探究练习相结合,符合《课标》精神。
络环境下代数课的教学模式:设置情境-提出问题-自主探究-合作交流-反思评价-巩固练习-总结提高 二、背景分析:
(一)学情分析:内容是义务教育课程标准实验教科书(人民教育出版社)数学八年级下册第十六章:《分式》
学生是本校初二实验班的学生,参加北师大“基础教育跨越式发展”课题实验一年半,学生基础知识较扎实,具有一定探索解决问题的能力,电脑使用水平较熟练,对于络环境下的学习模式已适应。
本节课实施络环境下教学,采用自学导读式教学模式。学生喜欢上络数学课,学习数学的兴趣较浓。
(二)内容分析:本节内容是在学生掌握了一元一次方程的解法和分式四则运算的基础上进
行的,为后面学习可化为一元二次方程的分式方程打下基础。通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,渗透类比转化思想。 (三)教学方式:自学导读—同伴互助—精讲精练 (四)教学媒体:Midea---Class纯软多媒体教学几何画板 三、教学目标:
知识技能:了解分式方程定义,理解解分式方程的一般解法和分式方程可能产生增根的原因,掌握解分式方程验根的方法。
过程方法:通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,渗透转化思想。 情感态度:强化用数学的意识,增进同学之间的配合,体验在数学活动中运用知识解决问题的成功体验,树立学好数学的自信心。
因篇幅问题不能全部显示,请点此查看更多更全内容