首页 热点资讯 义务教育 高等教育 出国留学 考研考公
您的当前位置:首页正文

Quasinormal modes of the electrically charged dilaton black hole

2022-07-23 来源:华拓网
1002 peS 82 1v6909010/cq-r:gviXraQuasinormalmodesoftheelectricallychargeddilaton

blackhole

R.A.Konoplya

DepartmentofPhysics,DniepropetrovskNationalUniversity

St.Naukova13,Dniepropetrovsk49050,Ukraine

konoplya@ff.dsu.dp.ua

Abstract

Wesketchtheresultsofcalculationsofthequasinormalfrequenciesoftheelec-tricallychargeddilatonblackhole.Attheearlierphaseofevaporation(Qislessthan0.7−0.8M),thedilatonblackhole”rings”withthecomplexfrequencieswhichdiffernegligiblyfromthoseoftheReissner-Nordstr¨omblackhole.Thespectrumofthefrequenciesweaklydependsuponthedilatoncoupling.

Whenperturbingablackholethereappeardampedoscillationswithcomplexfrequen-cieswhicharetheeigenvaluesofthewaveequationsatisfyingtheappropriateboundaryconditions.Usuallythesearetherequirementsofpurelyoutgoingwavesnearinfinityandpurelyingoingnearthehorizon.BoththecomplexpartoftheQNfrequency(inverselyproportionaltothedampingtime)andtherealone(representingtheactualfrequencyoftheoscillation)areindependentoftheinitialperturbationsandtherebycharacterizeablackholeitself.Thequasinormalspectrumoftheneutronstarsandblackholesisintensivelyinvestigatednow,sinceitisinthesuggestedrangeofthegravitationalwavedetectors(LIGO,VIRGO,GEO600,SPHERE)whichareunderconstruction.

FrequenciesofthequasinormalmodesoftheelectricallychargedBHwerecalculatedinseveralpaperslongtimeago(see[1]andreferencestherein).Yet,onvariousground,themainofwhicharesuggestionsofsupergravity,oneascribestoablackholeascalar(dilaton)field.Thelatterchangespropertiesofablackhole,anditseemsinterestingtofindoutwhatwillhappentothequasinormalspectrumwhenaddingadilatonchargetoablackhole.Certainly,oneshouldexpectthatforsmallchargesoftheelectromagneticanddilatonfieldsthespectrumwillnotdifferseeminglyfromthatoftheR-Nblackhole,and,eventhoughtheblackholesweseetoday,apparently,donothavelargeelectriccharge,theproblemisofinterest,sinceinchargedenvironmentelectromagneticwaveswillleadtogravitationalonestherebygivingasimplemodelforstudyingoftheconversingofgravitationalenergyintoelectromagneticoneandviceversa.

Weshallconsidertheoriesincludingcouplinggravitational,electromagneticandscalarfieldswiththeaction:

S=󰀅

d4x

√Astaticsphericallysymmetricsolutionoftheequationsfollowingfromthisactionrepresents,inparticular,electricallychargeddilatonblackholewiththemetricintheform:

ds2=λ2dt2−λ−2dr2−R2dθ2−R2sin2θdϕ2(2)where

λ2=󰀁

1−

r−a2

+

r

󰀂1r

󰀂

2a2

1+a2

󰀄

r−,

Q2=

r−r+

󰀂

2

r

2aR2

,(5)

whereaisanon-negativedimensionlessvaluerepresentingcoupling.Thecasea=0

correspondstotheclassicalReissner-Nordstr¨ommetric,thecasea=1issuggestedbythelowenergylimitofthesuperstringtheory.Theuniquenessofstatic,asymptoticallyflatspacetimeswithnon-degenerateblackholesinEinstein-Maxwell-dilatontheorywasprovedrecentlywheneithera=1,oraisarbitrarybutoneofthefields,electricormagnetic,isvanishing[2].

Theperturbationsobeythewaveequations:

󰀃

d2

2

󰀁

V1+V2±

󰀆

First,weobservedthatintheaxialcasethecomplexQN-frequenciescorrespondingtothegravitationalperturbationsalmostdonotdependonthevalueofthecouplingaofthedilatonfieldinthewiderangefroma=0uptoa∼100,unlesstheelectriccharge(inmassunits)istoolarge(Q≃0.7−0.8M).Weillustratethisforfundamentalmodes,i.e.formodeswithl=1,n=0,wherenistheovertonenumberinTab.1.Thisdependenceonaisstillweakfortheelectromagneticperturbations.

Tab.1Thefundamentalquasi-normalfrequenciescorrespondingtothegravitational

perturbations,axialcase.

Q=0.2Q=0.9

Re(ω)a−Im(ω)0.112520

0.09980

2

0.10040

0.13190

0.1125140.10294

8

0.10043

0.12611

0.1124216

100

0.10047r(r00

−2M)

1

M

󰀄−1

2

󰀂

3

(12)

Imω≈−

1

2

(13)

wherer0isthevalueofrwheretheblackholepotentialattainsitsmaximum;

4Mr0≈6M+Q+

2

2

󰀆

Eventhoughinthea=1casewecouldnotcomputetheQN-frequenciesaccuratelyenoughwhenapproachingtooclosetotheextremallimitwiththeunmodifiedChandrasekhar-DetweilerorWKBmethodsduetothebroadeningoftheeffectivepotentials[3],thevaluesofthequasinormalfrequenciesweobtainedforQ=1.41Mdonotleaveanyhopethatthefrequenciesforgravitationalandelectromagneticperturbationswillcoincideintheextremallimit.

1

4

[6]K.KokkotasandB.Schmidt,”Quasi-normalmodesofstarsandblackholes”inLiving

ReviewsinRelativity:www.livingreviews.org(1999)[7]H.Onozawa,T.Mishima,T.OkamuraandH.Ishihara,Phys.Rev.D53,7033(1996)[8]H.Onozawa,T.Okamura,T.MishimaandH.Ishihara,Phys.Rev.D554529(1997)[9]B.F.SchutzandC.M.Will,Astrophys.J.,291L3(1985)

[10]R.Kallosh,A.Linde,T.OrtinandA.Peet,Phys.Rev.D46,5278(1992)[11]N.AnderssonandH.Onozawa,Phys.Rev.D54,7470(1996)

5

ReΩ

Q

󰀂ImΩ0.09750.0950.09250.090.08750.085Q

0.20.40.60.811.21.40.20.40.60.811.21.40.80.60.4Figure1:Realandimaginarypartsofω,l=2,3,foraxialgravitationalperturbationsofthea=1dilatonblackholeandR-Nblackhole.For0󰀂ImΩ0.110.1050.20.40.60.811.21.40.0950.09Q

󰀂ImΩ0.1050.20.40.60.80.0950.0911.21.4Q

Figure2:Imaginarypartofωforaxialelectro-magneticperturbationsofthea=1dilatonblackholeandR-Nblackhole;l=2andl=3.

ReΩ1.81.61.41.20.20.40.60.80.80.60.60.70.80.911.21.4Q

ReΩ0.90.80.70.6Q

Figure3:Realpartofωforaxialelectro-magneticperturbations(l=2,3)fora=1dilatonblackholeandforR-None.EnlargedregionofthefigureshowswhenthedifferencebetweentheR-NQN-modesandthoseofitsdilatonanalogcannotbeignored.

6

24222018161412

0.20.40.60.811.21.40.1050.10250.09750.0950.09250.09

0.20.40.60.811.21.4Figure4:RealandimaginarypartsofωforlargelasanapproximatefunctionofQfora=1dilatonblackhole(bytheformulas(12-14))andforR-N(bytheformulas(4-5)ofthework[11])(M=1,l=100).

7

因篇幅问题不能全部显示,请点此查看更多更全内容