首页 热点资讯 义务教育 高等教育 出国留学 考研考公
您的当前位置:首页正文

attention Theoretical Insight into the Origin of Large Stokes Shift and

2021-02-19 来源:华拓网
DOI:10.1002/cphc.201200384

TheoreticalInsightintotheOriginofLargeStokesShiftandPhotophysicalPropertiesofAnilido-PyridineBoronDifluorideDyes

Jun-LingJin,Hai-BinLi,YunGeng,YongWu,Yu-AiDuan,andZhong-MinSu*[a]

Thegeometricandelectronicstructuresandphotophysicalpropertiesofanilido-pyridineborondifluoridedyes1–4,aseriesofscarce4,4-difluoro-4-bora-3a,4a-diaza-s-indacene(BODIPY)derivativeswithlargeStokesshift,areinvestigatedbyemployingdensityfunctionaltheory(DFT)andtime-depen-dentDFT(TD-DFT)calculationstoshedlightontheoriginoftheirlargeStokesshifts.Tothisend,asuitablefunctionalisfirstdeterminedbasedonfunctionaltestsandarecentlypro-posedindex—thecharge-transferdistance.ItisfoundthatPBE0providessatisfactoryoverallresults.Anin-depthinsightintoHuang–Rhys(HR)factors,Wibergbondindices,andtransi-tiondensitymatricesisprovidedtoscrutinizethegeometricdistortionsandthecharacterofexcitedstatespertainingtoab-sorptionandemission.TheresultsshowthatthepronouncedgeometricdistortionduetotherotationofunlockedphenylgroupsandintramolecularchargetransferareresponsibleforthelargeStokesshiftof1and2,while3showsarelativelyblue-shiftedemissionwavelengthduetoitsmildgeometricdistortionuponphotoemission,althoughithasacomparableenergygapto1.Finally,compound4,whichisdesignedtore-alizetherareredemissioninBODIPYderivatives,showsdesira-bleandexpectedproperties,suchashighStokesshift(4847cmÀ1),redemissionat660nm,andreasonablefluores-cenceefficiency.Thesepropertiesgiveitgreatpotentialasanidealemitterinorganiclight-emittingdiodes.ThetheoreticalresultscouldcomplementandassistinthedevelopmentofBODIPY-baseddyeswithbothlargeStokesshiftandhighquantumefficiency.1.Introduction

Luminescentorganoboroncompoundsareofgreatimportanceinapplicationsasdiverseasorganiclight-emittingdiodes(OLEDs),nonlinearoptics,fluorescentmolecularprobes,andin-tracellularfluorescenceimaging.[1]Amongthem,four-coordi-natedchelateboroncomplexeshaveattractedmuchattentionduetotheireasyavailability,goodphotostability,andhighchemicalandthermalstability[1a,b,j–n,2]relativetothree-coordi-natedboroncomplexes,whichneedbulkygroupstostabilizethem.Inparticular,4,4-difluoro-4-bora-3a,4a-diaza-s-indacene(BODIPY)anditsderivativeshavebeeninthespotlightofsci-entificinterestbecauseoftheirexcellentcharacteristicssuchashighfluorescencequantumyields,andsharpandtunableabsorption/emissionprofiles,[3]whichareinhighdemandforidealoptoelectronicmaterials.Moreover,goodtransportprop-ertiesenablethemtobeusedasorganicsemiconductorsinor-ganicfield-effecttransistors.[1c]Forexample,Zhaoetal.[4]re-portednovelBODIPYderivativeswithelectronmobilityupto0.291cmÀ2VÀ1sÀ1,whichcanfunctionasscarcen-typeorganicsemiconductors.[5]

ItisgenerallyrecognizedthattheremarkabledisadvantageofBODIPYdyesistheirverysmallStokesshifts,whichareaslowasapproximately10nm.Asaresult,thisextremelysmallStokesshift,whichcouldreducetheemissionintensityviaself-absorption,hasimpededtheirwideapplicationinOLEDsandasfluorescentmolecularprobes.Therefore,itisaninterestingissuetoenlargetheStokesshiftofBODIPYdyes.Uptonow,thestrategybasedonFçrsterresonanceenergytransfer,thatis,introducingotherfluorophoresatthe1,1’,2,3,4,5,6,7,8-posi-tionsoftheBODIPYcore,tendstoresultinthemoleculeoccu-pyingalargervolumeofspace.[6]However,suchanapproachusuallyrequiresacomplexsynthesisprocessandisrathercom-plicatedduetotheintricatemechanismoftheenergy-transfercassette;moreimportantly,thismethodcannotcompletelyeliminatethesmallStokesshiftofBODIPYs.[6c,e,f]Inthisrespect,itisstillagreatchallengetoincorporatealargeStokesshiftandnon-cassettesystemintoasingleBODIPYdye.Unfortu-nately,fewresearchstudieshavebeendevotedtothisaspect.Toourknowledge,onlyafewexamplesofsuchchromophores,suchasbisBODIPY[7]and2-thienyland2,6-bisthienylBODIPYderivatives,[8]exhibitalargeStokesshift.Recently,aseriesofBODIPYderivatives,namelyanilido-pyridineborondifluoridedyeswithbothlargeStokesshifts(80–114nm)andhighfluo-rescencequantumyields(0.33–0.75),werereportedbyPiersandco-workers;[9]somerepresentativecompounds1–3arede-pictedinFigure1.

Herein,ourinitialinterestinanilido-pyridineborondifluoridedyes1–3wascatalyzedbytheoriginoftheirlargeStokes

[a]J.-L.Jin,H.-B.Li,Dr.Y.Geng,Y.Wu,Y.-A.Duan,Prof.Dr.Z.-M.Su

InstituteofFunctionalMaterialChemistryFacultyofChemistry

NortheastNormalUniversityChangchun130024(China)Fax:(+86)431-85684009E-mail:zmsu@nenu.edu.cn

SupportinginformationforthisarticleisavailableontheWWWunderhttp://dx.doi.org/10.1002/cphc.201200384.

3714

󰀂2012Wiley-VCHVerlagGmbH&Co.KGaA,WeinheimChemPhysChem2012,13,3714–3722

TheOriginofLargeStokesShift

experimentaldataareacceptable,thusindicatingthatthePBE0/6-31+G(d)levelcanprovidequiteaccuratepredictionofthegroundgeometricstructuresforthestudiedcompounds.Asforthebasisset,Jacqueminetal.[11d]foundthat6-311G(2d,p)iscrucialtoobtaintheconvergedgeometriesforaza-BODIPY.Thus,comparativemoleculargeometricalcalcula-tionsatthePBE0/6-311G(2d,p)andPBE0/6-31+G(d)levelshavebeencarriedoutforcompound1(TableS2,SupportingInformation).Itisfoundthatthelargestdifferencebetweenthebondlengthsofthetwolevelsislessthan0.005󰀃.More-over,theresultsfordihedralanglescomputedatthePBE0/6-31+G(d)levelareclosertotheexperimentaldata.FromtheS0toS1state,thevariationsofthebondlengthsanddihedralanglescalculatedbythetwolevelsarequitesimilar.Thesere-sultsdemonstratethatthe6-31+G(d)basissetusedinthisworkissuitableenoughandthusitisusedforgeometryopti-mizationoftherestofthecompounds.Additionally,thesol-venteffects(CH2Cl2)onthemoleculargeometrieswerealsotestedandareshowninTableS3(SupportingInformation).Theresultsdemonstratethatthesolventeffectsalsohavelittleinfluenceonthegeometriesofthestudiedcompounds.

FromTableS1intheSupportingInformationandFigure2itisimportanttonotethattheground-stateconfigurationsofthemainaromaticskeletonareslightlydistortedin1and2withanunlockedphenylgroup.TheBF2subunitexhibitsade-

Figure1.Structuresofcompounds1–4andtheirnumberingscheme.

shiftsandhighquantumyields,becausethegeometricstruc-turesofthesedyesaresimpleandverysimilartothetradition-alBODIPYframework.Tothisend,thegeometricandelectron-icstructures,absorptionandemissionspectra,Wibergbondin-dices,andHuang–Rhys(HR)factorswereexploredusingdensi-tyfunctionaltheory(DFT)calculationstoprovideinsightintothestructure–propertyrelationshipsandtounderstandtheoriginoftheirlargeStokesshiftsandhighquantumyields.Ontheotherhand,BODIPYdyeshaverelativelyshortfluorescenceemissionmaxima.ReportsonBODIPYderivativeswithemissionwavelengthlongerthan600nmarerelativelyrare.[10]Recently,someBODIPYmoleculeswithlongemissionwavelengthhavebeenreportedinexperimentalandtheoreticalworks,[11]buttheirStokesshiftsarerelativelysmall,whichhamperstheminbeingidealemitters.Therefore,thesecondobjectiveistodesignBODIPY-basedchromophoreswithbothlongeremis-sionbandsandlargeStokesshifts.Compound4,quitesimilarto3,wasdesignedinanattempttoobtainagooddyewithredemission.Theresultsrevealthat4hasared-shiftedemissionwavelength,largeStokesshift,andcomparablefluorescenceef-ficiency.

2.ResultsandDiscussion

2.1.Ground-StateGeometriesTheselectedgeometricalpara-metersoptimizedatthePBE0/6-31+G(d)leveltogetherwiththeavailableX-raycrystaldiffrac-tiondataof1–3aresummarizedinTableS1intheSupportingIn-formation.TheatomiclabelingschemeisshowninFigure1andtheoptimizedgeometriesof1–4invacuumatthegroundstate(S0)andthelowestsingletexcit-edstate(S1)arepresentedinFigure2.Therelativeerrorsbe-tweentheoptimizedbondlengthsof1–3andthecorre-spondingexperimentaldataarenomorethan1.3,1.4,and0.9%,respectively.Suchdiscrepanciesbetweenthecalculatedandthe

ChemPhysChem2012,13,3714–3722

Figure2.OptimizedS0andS1geometries(topandsideviews)ofcompounds1–4invacuumatthePBE0/6-31+G(d)level.

󰀂2012Wiley-VCHVerlagGmbH&Co.KGaA,Weinheimwww.chemphyschem.org

3715

Z.-M.Suetal.

viationanddisplacementoutwardsfromthemeanC3N2planeby0.566and0.433󰀃in1and2,respectively.ThisparticularconfigurationiscausedbyCÀH···FÀBinteraction.[12]ThephenylgroupattheN2siteistwistedrelativetothemainplaneowingtostericinteraction,thuspullingoutwardtheBF2subu-nitandcreatingaslightlydistortedmainaromaticskeleton.Incontrast,for3and4withlockedphenylgroup,theground-stategeometriesarestrikinglydifferentfromthoseof1and2.Theypossessplanarconfigurationsowingtotheabsenceofsterichindrance.Therefore,fromtheground-statestructuresof1–4,theunlockedphenylgroupsgreatlydisturbtheplanarityofthebackbonesof1and2,whichisexpectedtoexertadirecteffectonthephotophysicalperformance.2.2.FrontierMolecularOrbitalsintheGroundStateFrontiermolecularorbitals(FMOs)areincloseconnectionwiththeelectronicexcitationandtransitioncharacters.ToevaluatepreliminarilytheeffectofaromaticsubstitutionontheelectrondistributioninFMOs,Figure3showsthehighestoccupiedmo-tiononthebondC4ÀC6intheHOMOandLUMOof3.Thus,compound3exhibitssimultaneouslyloweredHOMOandLUMOlevelsandacomparableenergygaprelativeto1.Inter-estingly,incontrastto1–3,compound4possessesasomewhathigherHOMO,amuchlowerLUMO,andconsequentlyanarrowenergygapalthoughithassimilarconjugationwith3,whichisascribedtothesignificantlydifferentdistributionofFMOs.AscanbeenseenfromtheFMOsinFigure3,thepelec-tronoftheN2atomof3showsantibondinginteractionwiththepelectron,whileastrongbondinginteractionisfoundin4.Hence,theeffectiveconjugationofp–pelectronsseriouslylowerstheLUMOandraisestheHOMO,whichresultsinanar-rowerenergygap.Therefore,aredshiftcanbeexpectedintheabsorptionandemissionofcompound4incomparisonwith1–3.

2.3.OpticalPropertiesandTransitionDensityMatrix2.3.1.TheChoiceofFunctional

Itisgenerallyrecognizedthatpurefunctionalsandsomehybridfunctionalsunderestimatethetransitionenergiesofex-citedstateswithcharge-transfercharacter.[13]Therefore,tochooseanappropriatefunctionalforcompounds1–4,wefirstselected1asanexampletocheckthecharge-transferproper-tiesofthiscompoundusingcodeMultiwfn2.3(thecalculationmodelisdescribedintheSupportingInformation).[14,25]Thecentroidsofcharge(C+/CÀ)andthecharge-transferdistance(DCT)betweenthebarycentersofdensitydepletionanddensityincrementzone[14]computedforthefirstelectronictransitionatthePBE0/6-31+G(d)levelaredepictedgraphicallyinFigure4.DCTisveryshortwiththevalue2.07󰀃,anditcanbe

Figure3.Molecularorbitalplots,HOMOandLUMOenergylevels,and

energygapsfor1–4attheirS0optimizedgeometriesobtainedinvacuumatthePBE0/6-31+G(d)level(themolecularorbitalplotswereobtainedwithanisodensitysurfaceof0.0004a.u.).

lecularorbital(HOMO)andlowestunoccupiedmolecularorbi-tal(LUMO)levelsandtheenergygapsfor1–4attheirS0opti-mizedgeometriescalculatedatthePBE0/6-31+G(d)level.

AscanbeseeninFigure3,HOMOsaregenerallydelocalizedoverthewholemolecularskeletonofthefourcompounds,whileLUMOsaresomewhatlocalized.Simultaneously,theFMOenergylevelsaresignificantlyaffectedbythedifferentarrange-mentofthewholemolecularskeleton.ByinspectingtheHOMOandLUMOenergylevelsof1and2,itisfoundthat2hasalowerLUMOandhigherHOMOlevelandthusnarrowerenergygap,whichisascribedtotheenlargementofpconju-gationbyincorporationofthevinylbridgeinthemainplaneof2.Asfor3,thephenylgroupislockedbybondC4ÀC6.Al-thoughaplanarskeletonbenefitstheextensionofconjuga-tion,thedistributionofFMOsof3closelyresemblesthatof1.Theplanareffectonlybringsabouttheextensionofdelocaliza-

Figure4.GraphicalrepresentationofDCT(A)andcentroidsofchargeC+/CÀ(B)computedatthePBE0/6-31+G(d)levelwithisocontourvalueof

0.0004a.u.Thegrayanddarkgrayzonescorrespondtodensityincrementanddecrement,respectively.

seenthatthedensitydepletionzoneanddensityincrementzonearealmostsuperposed.Therefore,thisBODIPYderivativeexhibitsaveryweakcharge-transfercharacteristic,andhenceconventionalfunctionalscanbefullysuitableforthedescrip-tionofexcitedstatesofthesecompounds.

Toobtainmoreaccurateresults,agroupofrepresentativefunctionalsincludingB3LYP,PBE0,BHandHLYP,andCAM-B3LYPwastestedontheabsorptionandemissionenergyandStokesshiftof1.ThecalculateddatacollectedinTableS4(Supporting

ChemPhysChem2012,13,3714–3722

3716

www.chemphyschem.org󰀂2012Wiley-VCHVerlagGmbH&Co.KGaA,Weinheim

TheOriginofLargeStokesShift

Information)showthatallthefunctionalsexceptforB3LYPprovidecomparablepredictionofStokesshiftcomparedtotheexperimentalvalue.Importantly,PBE0suppliesrelativelymoreaccurateresultsforabsorptionandemissionenergy.Therefore,PBE0[15]wasadoptedforthestudiedcompoundsconsideringthefocusofthisworkistostudytheStokesshiftanddesignnewemitterswithlongeremissionwavelength.

Fortheemissionspectra,theemissionpeaksfor1–4allarisefromtheS1state,whichconsistsofaLUMO!HOMOtransi-tion.Itshouldbepointedoutthatalthough4hasasimilarconfigurationto3,theiremissionwavelengthsareremarkablydifferent.Compound4exhibitsared-shiftedemissionwave-length.Moreimportantly,thisamazingwavelengthlocatesintheredregion,whichisscarceforBODIPYderivatives.Thisfea-tureallows4tohavegreatpotentialasanimportantredemit-ter.Furthermore,5showsquiteasmallStokesshift,whereas

2.3.2.OpticalProperties

1–4alldisplaymuchlargerStokesshiftsthanthatof5(1509cmÀ1),especially1,2,and4.AnenhancedStokesshiftisThetheoreticalresultsfortheabsorptionandemissionspectra

necessaryforanemitterinOLEDapplications,sinceasmallof1–4calculatedatthePCM(CH2Cl2)-TD-PBE0/6-31+G(d)level

onewillresultinthereabsorptionoftheemittedphotons.arelistedinTable1andTable2,respectively.Moreover,toper-Therefore,thisexcellentfeatureenables1–4tohavebetterpo-tentialapplications.

Table1.Calculatedabsorptionwavelengthslabs[nm],excitationenergiesItisnoteworthythatthecalculatedemissionwavelengthofEx[eV],oscillatorstrengthsf,anddominantexcitationcharacterofcom-1isslightlyoverestimatedcomparedwiththeexperimental

pounds1–4andparentBODIPYcompound5togetherwithexperimentalone(598.5nmfromDFTand531nmfromexperiment)withan

absorptionresultslabsexp[nm].CalculationswereperformedatthePCM-errorofabout0.15eV.Moreover,byinspectingtheconfigura-(CH2Cl2)-TD-PBE0/6-31+G(d)//PBE0/6-31+G(d)level.tionsofexcitedstatesandthecharacterofFMOsforthefour

ExfComposition[a]labsexpCompoundTransitionlabscompounds,anintramolecularchargetransfer(ICT)process[b]1S0!S1399.63.1030.277H!L(99%)417stillexistsuponexcitation.Tocrosscheckthattheobtained2S0!S1437.32.8350.215H!L(98%)465[b]spectralresultsarereliable,adiagnostictestbasedonthet[14]

[b]3S0!S1399.33.1050.309H!L(99%)416andL[17]factorwascarriedout.Anegativevalueoftsignifies4S0!S1500.22.4790.175H!L(99%)–aspatialoverlapbetweencentroidsofcharges,andwhentis409.03.0310.580H!L(96%)505[c]5S0!S1largerthan1.6󰀃,thetransitionsprovidedbypureorhybrid

[a]HdenotesHOMOandLdenotesLUMO.[b]Measuredindichlorome-functionalsareproblematic.[14]Lrepresentstheoverlapbe-thane,ref.[9].[c]Measuredinchloroform,ref.[16].tweenoccupiedandvirtualmolecularorbitalsinvolvedinexci-tation;theLparametercanbeemployedtojudgethereliability

Table2.Calculatedemissionwavelengthslem[nm],emissionenergiesEm[eV],oscillatorstrengthsf,dominantofthegeneralexcitationsfromexcitationcharacter,andStokesshifts(SS)[cmÀ1]ofcompounds1–4andparentBODIPYcompound5togetherfunctionalsPBEandB3LYP.ThatwithexperimentalSSvalues(SSexp)[cmÀ1]andemissionlemexp[nm]data.Calculationswereperformedattheis,whenL<0.4forPBEorL<

PCM(CH2Cl2)-TD-PBE0/6-31+G(d)//TD-PBE0/6-31+G(d)level.0.3forB3LYP,theexcitationisexp[a]EmfNatureSSSSexplemCompoundTransitionlemlikelytobeinverysignificant

error.[17]ThetandLparameters1S1!S0598.52.0710.069H!L(99%)83175148531[b]2S1!S0551.12.2500.147H!L(99%)47224382584[b]havebeencalculatedusing3S1!S0471.42.6300.188H!L(99%)38303877496[b]codesMultiwfn[25]andQ-Chem

4S1!S0660.31.8780.079H!L(100%)4847––package,[18]respectively.Thecor-435.92.8440.406H!L(92%)1509791526[c]5S1!S0respondingtvalues(tx,x-axis

[a]HdenotesHOMOandLdenotesLUMO.[b]Measuredindichloromethane,ref.[9].[c]Measuredinchloro-component)computedatthe

form,ref.[16].PBE0/6-31+G(d)levelareÀ0.36,À0.45,À0.23,and0.07for1–4,

formasystematiccomparisonbetweenourstudiedcom-respectively(TableS5,SupportingInformation),whilethecor-poundsandtheBODIPYs,theabsorptionandemissionspectrarespondingLvaluescalculatedbytheB3LYPfunctionalfor1–

[16]

oftheparentborondipyrromethenecompound,BODIPY4are0.56,0.57,0.52,and0.49,respectively.Theseresults

stronglydemonstratethatthespatialoverlapbetweentheoc-(hereafterlabeled5;thestructureispresentedinFigure5and

cupiedandvirtualmolecularorbitalsinvolvedinexcitationisFigureS1intheSupportingInformation),werealsocomputed.

largeenough.Therefore,theexcitationenergiesofthestudiedThecalculatedwavelengthsandthevariationtrendsof1–3are

compoundscomputedbyPBE0arereliable.ingoodagreementwithexperimentalresults,thusconfirming

thattheadoptedmethodsaresuitable.Theelectronictransi-tionsof1–5areofp!p*typefromFigure3andFigureS1.

2.3.3.TransitionDensityMatrix

Theabsorptionpeaksof1–5allcorrespondtotheS0!S1tran-Torevealunambiguouslythetransitionnature,thetransitionsition,whichismainlydescribedbyasingleone-electronexci-densitymatrixes(TDMs)of1–4andtheparentBODIPYcom-tationfromHOMOtoLUMO.Thus,4showsared-shiftedab-pound5werecomputed.Itshouldbepointedoutthatinthissorptionwavelengthcomparedwith1–3,whichisingood

partofthecalculations,6-31G(d)wasusedtoavoidthelinearagreementwiththetrendoftheenergygapsdiscussedabove.

ChemPhysChem2012,13,3714–3722

󰀂2012Wiley-VCHVerlagGmbH&Co.KGaA,Weinheim

www.chemphyschem.org

3717

Z.-M.Suetal.

Therefore,thetransitionnatureofabsorptionandemissionfor1–4isthemixingoflocalizedtransitionandICTtransition.ICTnormallydissipatestheexcita-tionenergyofamoleculeandrendersared-shiftedemissionband.Therefore,ICTcharacterplaysacrucialroleintheen-hancedStokesshiftsof1–4.

Furthermore,fromabsorptiontoemission,1and2undergoasomewhatrearrangedelectrondensity,especiallyinthediago-nalboxes,whichindicatesgeo-metricrelaxationfollowingtheelectronicexcitations.Thereis,however,almostnorearrange-mentseenin5.Thisfeatureim-pliesthatthestrikinglylargerStokesshiftsof1–4haveanon-negligiblecontributionfromthegeometricrelaxation.Toobtainafirmassessmentofthegeo-metricrelaxationintheS1state,weturnnexttothediscussionofHRfactorsandtheinvestiga-tionofexcited-statestructuresofthefourcompounds.2.4.RationalizationofLargeStokesShift

TodisclosetheunderlyingoriginofthelargeStokesshift,theHRparameter,whichhasbeenprovedbyprevioustheoreticalstudiestobeausefulparameter

Figure5.Transitiondensitymatrixofthehotexciton(absorption,firstcolumn)andcoldexciton(emission,

tomeasuretheextentofthesecondcolumn)forcompounds1–5calculatedbyPBE0/6-31G(d)invacuum.Thenumberingofeachcompound

geometricdistortion,[19]iscalcu-ispresentedinthethirdcolumn(thehydrogenatomshavebeenomitted).

lated.TheHRparameterdirectlyconnectswiththeshiftDQof

theequilibriumpositionsoftheinvolvedelectronicstates,thatdependenceofthebasissetforthecompoundsunderstudy.

is,theS0andS1statesinvolvedinthephotoexcitationandTheTDMisusefultovisualizethesizeandlocationofexcitons

foroptoelectronicmolecules.TheTDMforabsorptionandfluorescenceemission.AccordingtotheFranck–Condonprinci-emissionassociatedwiththeS1statewascalculatedinvacuumple,nogeometricchangetakesplaceduringphotoexcitation.

Therefore,theHRparametercharacterizestheextentofgeo-atthePBE0/6-31G(d)levelandisdepictedinFigure5.Thehor-metricrelaxationattheS1statebeforefluorescenceemission.izontalandverticallinesseparatethepyridineparts,BF2sub-units,andbenzeneparts(parta,BF2,andpartb,respectively)Asdiscussedabove,theinfluencesofsolventeffectsonthegeometryarenegligible.Asaresult,theresultsforHRfactorsof1–4.Notethatthehydrogenatomshavebeenomittedin

depictedinFigure6werecomputedatthePBE0/6-31+G(d)viewoftheirverysmallcontribution.ByinspectingFigure5,

levelinvacuum(valuesofHRfactorsof1–5arecollectedinTa-therearealmostnoexcitonslocalizedonBF2subunitsof1–5.

blesS6–S10intheSupportingInformation).AsshowninImportantly,excitonsmainlydistributeoverthemainconjuga-Figure6,exceptforonemodeat38.78cmÀ1thathasamoder-tionplaneof5,thusdemonstratingthat5favorslocalized

transition.However,for1–4,excitonsprimarilylocalizeintheateHRfactor(7.60),alltheHRfactorsfor5aresparseandtrivi-diagonalboxes(a–a)and(b–b),andoff-diagonalboxes(a–b)alinthevibration-accessibleenergyregion.Insharpcontrast,(or(b–a))forphotoexcitationandfluorescenceemission.1and2displayevidentlylargerHRfactors,especiallyinthe

3718

www.chemphyschem.org󰀂2012Wiley-VCHVerlagGmbH&Co.KGaA,WeinheimChemPhysChem2012,13,3714–3722

TheOriginofLargeStokesShift

citationarestrikinglydifferent(seeFigure2andTableS1intheSupportingInformation).FromS0toS1,thewholemolecularskeletonofcompound1un-dergoesasignificantcoplanareffect,withthedihe-dralanglesC7-N1-N2-BandC3-N2-C5-C6decreasingby26.24and29.438,respectively.Thiscoplanareffectisevidentlybeneficialtotheenlargementofconjuga-tion(FigureS3intheSupportingInformation).TheHOMOisgreatlyraisedandtheLUMOisgreatlylow-eredfor1intheS1statecomparedwiththoseintheS0state.However,onlyslightchangeoccursforthegeometryof3fromS0toS1becauseoftheconstrain-edstructure.Hence,theFMOenergylevelandenergygapexhibitlittlevariationintheS1state.Ontheotherhand,thedifferentHRfactorsof1and3manifestthattheirgeometricrelaxationsaregreatlydifferent.Thesignificantgeometricdistortiondissi-patestheexcitationenergyof1,thusitsred-shiftedemissioncanberationalized,whiletheslightgeo-metricdistortionof3accessesahigh-energyemis-sion.Therefore,3showsablue-shiftedemissionincomparisonto1.Thisfactalsodemonstratesthatthephenylgroupplaysanimportantroleintuningtheemissioncolorbyadjustingthegeometricdistortion.TofurtherevaluatetheeffectsoftheunlockedorlockedphenylgroupsonthechangeofStokesshifts,thegeometriesinthegroundandexcitedstateswereanalyzedindetail.Fromtheenergy-minimizedS0toS1state(Figure2andTableS1intheSupportingInformation),remarkablechangestakeplaceinthegeometriesof1and2,whichcanbeviewedfrom

Figure6.CalculatedHRfactorsandthenormal-modewavenumbersfor1–5.Theinsets

twoperspectives:1)asignificantdecreaseofthedi-showthecorrespondingvibrationalmodesofnormal-modedisplacementswithrelatively

hedralanglebetweenthephenylgroupandC3N2BhugeHRfactor;thevaluesinparenthesesarethecorrespondingHRfactors.

meanplane(by29.438)andaconsequentlyevidentcoplanartrendareobserved;and2)thebenzeneringwithC3andC4atomsexhibitsanoutwarddisplace-À1

mentfromthemainplane.Thesecharacteristicsconfirmagainhigh-frequencyregionof500–1500cm,whichdemonstrates

thattheunlockedphenylgrouphasimportanteffectsonthethattheirS1statesundergoastronggeometricdistortion

geometricaldistortionof1and2.Interestingly,bondN2ÀC5inuponexcitation.Theexcitationenergiesarethuspartlydissi-1and2showsantibondingcharacterinboththeHOMOandpated,whichresultsinalargeStokesshiftfor1and2.Onthe

theLUMO.However,thebondlengthsareclearlylongerintheotherhand,for3and4,alltheHRfactorsarelessthan0.9,

groundstate(1.419󰀃for1and1.423󰀃for2)thanthoseinthusindicatingthatthegeometricdistortionsaremild.There-theS1state(1.364󰀃for1and1.370󰀃for2).Thebondlengthsfore,3hasasomewhatlowerStokesshiftthan1and2.How-ofN2ÀC5intheS1statearewithintherangeofaC=Ndoubleever,4stillhasahighStokesshift.Thiscanbeattributedto

bond(1.34󰀃forpyridineand1.37󰀃forporphyrin),[20]whilethefactthat4ischaracterizedbyICT,whichcanbeseenfrom

thoseofthegroundstatearefoundbetweenthetypicalsingletheTDMshowninFigure5.

(1.47󰀃formethylamine)[20]anddoubleC=Nbondlength.ThevibrationalmodeswithrelativelylargeHRfactorin1–4

areplottedinFigure6(insets).For1and2withanunlockedThentheWibergbondindexforN2ÀC5(WBIN2ÀC5)of1–4phenylgroup,thesevibrationalmodesareout-of-planemo-wascalculated(Table3).InthegroundstateWBIN2ÀC5values

tionsofthemainskeletonandtherotationsofthephenylare0.99and0.98for1and2,respectively,whileintheS1stateunit,whilethevibrationalmodesof3and4aremainlyin-theyare1.05and1.01,respectively.Generally,thesmallerthe

planemotions.AllthesefeaturesindicatethatwhentheWBIvalue,thelongerthebondlength.Thus,wecanconcludephenylgroupswitchesfromunlockedtolocked,thegeometricthatN2ÀC5showssingle-bondcharacterinthegroundstate.distortionisverydifferentandleadstodifferentStokesshifts.Thisfeatureenablescompounds1and2tohavetwistedgeo-Asdiscussedabove,asignificantlyblue-shiftedemissionwasmetries.WhenturningtotheS1state,N2ÀC5displaysdouble-observedin3,althoughithasasimilargeometryto1.Onthebondcharacter.Therefore,thecoplanartendencyoftheonehand,thegeometricrearrangementsof1and3uponex-ChemPhysChem2012,13,3714–3722

󰀂2012Wiley-VCHVerlagGmbH&Co.KGaA,Weinheim

www.chemphyschem.org

3719

Z.-M.Suetal.

Table3.ComputedWibergbondindexofbondN2ÀC5(WBIN2ÀC5),thesumofHRfactors(Sum(HR)),andexperimentalluminescencequantumyields(FF).Compound12345WBIN2ÀC5S00.990.981.091.15–Sum(HR)S11.051.011.181.09–97.4050.813.703.9611.470.33[a]0.60[a]0.75[a]–0.76[b]FF3.Conclusions

Systematictheoreticalcalculationshavebeenperformedtoin-vestigatethephotophysicalpropertiesoffourBODIPYderiva-tives.Thecharge-transferpropertiesofthestudiedcompoundsandthefunctionaltestswerefirstdeterminedwiththeaimofselectingasuitablefunctional.Thecalculatedresultscanwellreproducetheexperimentalmeasurements.Itisfoundthatwiththephenylgrouplockedorunlocked,theelectronicstruc-ture,excitonicbehavior,emissionwavelength,Stokesshift,andfluorescenceefficiencyaresignificantlydifferent.TheICTchar-acterandpronouncedgeometricdistortionduetotherotationoftheunlockedphenylgroupfor1and2bothcontributetoanenhancedStokesshift.Forplanarcompound3,themildgeometricdistortionleadstoablue-shiftedemissiondespiteithavingacomparableenergygaptothatof1.Thedesignedcompound4alsodisplaysacommendablylargeStokesshiftarisingmainlyfromitsintrinsicICTcharacter.Impressively,4showsfascinatingproperties,suchaslargeStokesshift(4847cmÀ1),redemission,andreasonablefluorescenceeffi-ciency,whichallowittohavegreatpotentialapplicationinOLEDs.Finally,weareconvincedthatourworkshouldcontrib-utetofocusingthesynthesiseffortsandwillhelpunderstand-ingofthestructure–propertyrelationshipsofthiskindofcom-pound.

[a]Measuredindichloromethane,ref.[9].[b]Measuredinchloroform,ref.[16].phenylgroupwithC3N2Bmeanplanecausesasignificantgeo-metricdistortion,whichisinfavorofalargeStokesshift.

Thephenyl-locked3and4maintaintheplanargeometryfromtheS0toS1state.TheWBIN2ÀC5valueof3exhibitsthesametendencyasthoseof1and2,whichcanbeattributedtothefactthatbondN2ÀC5intheHOMOshowsanantibondinginteractionandintheLUMOrepresentsthebondinginterac-tion(Figure3).Forcompound4,theWBIN2ÀC5valuesare1.15and1.09fortheS0andS1states,respectively,becausebondN2ÀC5exhibitsbondingcharacterintheHOMOandantibond-ingcharacterintheLUMO.

TheoreticalMethods

2.5.FluorescenceEfficiency

Inrealisticapplications,thefluorescenceefficiencyofanemit-terisveryimportantfortheperformanceofOLEDs.ItiswellknownthatBODIPYderivativesalwayshavehighfluorescenceefficienciesbothinsolutionandthesolidstate.Thefluores-cenceefficienciesofthefourcompoundswerequalitativelyan-alyzedbycomparingtheircorrespondingHRparameters.

Toperformamoredirectcomparisonoffluorescencequan-tumefficiencyforthefourcompounds,theHRfactorsofeachcompoundareaddedtogether,thetotalvaluesbeing11.47,94.7,50.81,3.70,and3.96for5and1–4,respectively.Thenon-radiativedecayrateisproportionaltotheHRfactor;thesmall-ertheHRfactor,thesmallerthenonradiativedecayrateandthehigherthefluorescencedecayrate.Therefore,theorderoffluorescencedecayratesforcompounds1–3is3>2>1,whichisingoodagreementwiththeexperimentallymeasuredluminescencequantumyieldsinCH2Cl2.ItisseenthatthesumofHRfactorsfor4issmallerthanthatfor5andcomparablewiththatfor3.Thus,itisreasonabletobelievethat4canactasahighlyefficientredemitter.Moreover,uponinspectionofFigure6,itisreadilyseenthatthevibrationalmodesof1and2withlargeHRfactorlocateinthelow-frequencyregion(<100cmÀ1),whicharemainlyout-of-planemotionsofthephenylgroupandmainplane.Previousexperimentalandthe-oreticalreportshavesuggestedthatout-of-planevibrationalmodeswillberestrictedinaggregationstatessuchasfilm;[19,21]therefore,weconceivethatcompounds1and2mayactasaggregation-inducedenhancedemissionmaterials.

TheoreticalBackground

Thephotoluminescenceefficiencyhcanbeexpressedas[Eq.(1)]:h¼

krkrþknr

ð1Þ

wherekristheradiativedecayrateandknristhenonradiativedecayrate.Ingeneral,thenonradiativedecayratecomprisesinter-nalconversion(kIC)andintersystemcrossingprocesses(kISC).Gener-ally,foraflexibleorganicmoleculewithouttransition-metalatom,thenonradiativedecayispredominantlygovernedbyinternalcon-version.Therefore,thenonradiativedecayrateknrarisingfromin-ternalconversioncanbeexpressedas[Eqs.(2)and(3)]:knr¼

X1󰀂wl

l

hh2\"\"󰀃jRlðfiÞj2NFC

ð2Þ

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi\"#P0

2

ðwþwþSwÞ2pfiljjj

NFC¼P0expÀP022\"jþ1Þ\"jþ1Þ2jSjwjð2njSjwjð2n

ð3Þ

whereimeanstheinitialstateSnandfmeansfinalstateS0,NFC

referstothedensity-weightedFranck–Condon(FC)factor,andSjistheHRfactorforthejthmode.TheNFCfactorisexponentiallypro-portionaltotheHRfactorsofasumofallthemodesexceptthatofthepromotingmode,andthemostimportantcontributioncomesfromthedenominatorintheexponentialfunction.Thus,theHRfactorcanqualitativelyevaluatethenonradiativedecayrate;[19a,21]thatis,vibrationalmodesshowappreciableHRfactors,therebyresultinginalargeFCfactorandalargenonradiativedecayrate.

ChemPhysChem2012,13,3714–3722

3720

www.chemphyschem.org󰀂2012Wiley-VCHVerlagGmbH&Co.KGaA,Weinheim

TheOriginofLargeStokesShift

TheHRparameterdirectlyconnectswiththeshiftDQbetweentheequilibriumpositionsoftheinvolvedelectronicstates.Itsformulais[Eq.(4)]:wjÁDQ2j

Sj¼

2\"hð4Þ

ROCS,andtheScienceandTechnologyDevelopmentPlanningof

JilinProvince(201201071).WearealsogratefultoMissSoberevaattheUniversityofScienceandTechnologyBeijingfordiscussionandkindhelpandtoPatrikCallis(MSU)forsupplyingtheBoze-suiteprogram.

Keywords:densityfunctionalcalculations·dyes/pigments·electronicstructure·photophysics·Stokesshift

[1]a)J.Guilleme,D.Gonzµlez-Rodríguez,T.Torres,Angew.Chem.2011,123,

3568–3571;Angew.Chem.Int.Ed.2011,50,3506–3509;b)E.Tsurumaki,S.-y.Hayashi,F.S.Tham,C.A.Reed,A.Osuka,J.Am.Chem.Soc.2011,133,11956–11959;c)T.Kojima,D.Kumaki,J.-i.Nishida,S.Tokito,Y.Ya-mashita,J.Mater.Chem.2011,21,6607–6613;d)L.Weber,D.Eickhoff,T.B.Marder,M.A.Fox,P.J.Low,A.D.Dwyer,D.J.Tozer,S.Schwedler,A.Brockhinke,H.-G.Stammler,B.Neumann,Chem.Eur.J.2012,18,1369–1382;e)Y.Sun,N.Ross,S.B.Zhao,K.Huszarik,W.L.Jia,R.Y.Wang,D.Macartney,S.Wang,J.Am.Chem.Soc.2007,129,7510–7511;f)F.Cheng,F.Jakle,Chem.Commun.2010,46,3717–3719;g)Y.Cui,F.Li,Z.-H.Lu,S.Wang,DaltonTrans.2007,2634–2643;h)J.Ugolotti,S.Hell-strom,G.J.P.Britovsek,T.S.Jones,P.Hunt,A.J.P.White,DaltonTrans.2007,1425–1432;i)B.J.Liddle,R.M.Silva,T.J.Morin,F.P.Macedo,R.Shukla,S.V.Lindeman,J.R.Gardinier,J.Org.Chem.2007,72,5637–5646;j)Y.Inokuma,Z.S.Yoon,D.Kim,A.Osuka,J.Am.Chem.Soc.2007,129,4747–4761;k)S.-F.Liu,Q.Wu,H.L.Schmider,H.Aziz,N.-X.

´,S.Wang,J.Am.Chem.Soc.2000,122,3671–3678;l)R.Hu,Z.Popovic

´liborski,L.Latos-Graz´ski,L.Szterenberg,T.Lis,Angew.Chem.˙ynMys

2006,118,3752–3756;Angew.Chem.Int.Ed.2006,45,3670–3674;m)T.Torres,Angew.Chem.2006,118,2900–2903;Angew.Chem.Int.Ed.2006,45,2834–2837;n)Q.Liu,M.S.Mudadu,H.Schmider,R.Thummel,Y.Tao,S.Wang,Organometallics2002,21,4743–4749.

[2]a)H.Zhang,C.Huo,K.Ye,P.Zhang,W.Tian,Y.Wang,Inorg.Chem.

2006,45,2788–2794;b)H.Y.Chen,Y.Chi,C.S.Liu,J.K.Yu,Y.M.Cheng,K.S.Chen,P.T.Chou,S.M.Peng,G.H.Lee,A.J.Carty,S.J.Yeh,C.T.Chen,Adv.Funct.Mater.2005,15,567–574.

[3]a)A.Loudet,K.Burgess,Chem.Rev.2007,107,4891–4932;b)G.Ulrich,

R.Ziessel,A.Harriman,Angew.Chem.2008,120,1202–1219;Angew.Chem.Int.Ed.2008,47,1184–1201;c)N.Boens,V.Leen,W.Dehaen,Chem.Soc.Rev.2012,41,1130–1172;d)J.Karolin,L.B.A.Johansson,L.Strandberg,T.Ny,J.Am.Chem.Soc.1994,116,7801–7806;e)R.Ziessel,G.Ulrich,A.Harriman,NewJ.Chem.2007,31,496–501;f)H.Kim,A.Burghart,M.B.Welch,J.Reibenspies,K.Burgess,Chem.Commun.1999,1889–1890;g)V.Leen,D.Miscoria,S.Yin,A.Filarowski,J.MolishoN-gongo,M.VanderAuweraer,N.Boens,W.Dehaen,J.Org.Chem.2011,76,8168–8176;h)Y.Hayashi,S.Yamaguchi,W.Y.Cha,D.Kim,H.Shino-kubo,Org.Lett.2011,13,2992–2995;i)T.Kowada,S.Yamaguchi,K.Ohe,Org.Lett.2010,12,296–299;j)J.Meiss,F.Holzmueller,R.Gresser,K.Leo,M.Riede,Appl.Phys.Lett.2011,99,193307–3.

[4]M.X.Zhang,S.Chai,G.J.Zhao,Org.Electron.2012,13,215–221.

[5]a)Y.Geng,J.Wang,S.Wu,H.Li,F.Yu,G.Yang,H.Gao,Z.Su,J.Mater.

Chem.2011,21,134–143;b)Y.Geng,S.X.Wu,H.-B.Li,X.D.Tang,Y.Wu,Z.M.Su,Y.Liao,J.Mater.Chem.2011,21,15558–15566;c)X.-K.Chen,L.-Y.Zou,J.-F.Guo,A.-M.Ren,J.Mater.Chem.2012,22,6471–6484;d)Y.-A.Duan,Y.Geng,H.-B.Li,X.-D.Tang,J.-L.Jin,Z.-M.Su,Org.Electron.2012,13,1213–1222.

[6]a)A.Burghart,L.H.Thoresen,J.Chen,K.Burgess,F.Bergstrom,L.B.A.

Johansson,Chem.Commun.2000,2203–2204;b)A.Harriman,G.Izzet,R.Ziessel,J.Am.Chem.Soc.2006,128,10868–10875;c)C.-W.Wan,A.Burghart,J.Chen,F.Bergstrçm,L.B.󰀃.Johansson,M.F.Wolford,T.G.Kim,M.R.Topp,R.M.Hochstrasser,K.Burgess,Chem.Eur.J.2003,9,4430–4441;d)J.Y.Liu,E.A.Ermilov,B.Roder,D.K.P.Ng,Chem.Commun.2009,1517–1519;e)R.Ziessel,S.Rihn,A.Harriman,Chem.Eur.J.2010,16,11942–11953;f)A.Harriman,L.J.Mallon,K.J.Elliot,A.Haefele,G.Ulrich,R.Ziessel,J.Am.Chem.Soc.2009,131,13375–13386;g)G.Ulrich,F.Nastasi,P.Retailleau,F.Puntoriero,R.Ziessel,S.Campa-gna,Chem.Eur.J.2008,14,4381–4392;h)F.D’Souza,A.N.Amin,M.E.El-Khouly,N.K.Subbaiyan,M.E.Zandler,S.Fukuzumi,J.Am.Chem.Soc.2012,134,654–664;i)J.Shao,H.Sun,H.Guo,S.Ji,J.Zhao,W.Wu,X.

wherewjrepresentsthevibrationalfrequencyforthej-thmodeandDQjisthenormal-modedisplacement.

Thetransitiondensitymatrix(TDM)betweengroundandexcitedstates,PGE,canbeobtainedfromtheirelectronicwavefunctionsyGandyE.Basedontheexpansionbyatomic-centerbasisfunc-tions,theTDMPGEcanbecontractedintonewmatrixPtomakeitrepresentedbyatomcenters[Eq.(5)]:PGEA;B¼

XX

a2Ab2B

2

ðPGEa;bÞ

ð5Þ

whereaandbdenotethebasisfunctionscenteredonatomsA

andB,respectively.Diagonalterms,forexamplePA,A,representthemagnitudeofinducedchargeonatomAwhenthesystemunder-goeselectrontransitionfromgroundstatetoexcitedstate.Off-di-agonalterms,forexamplePA,B,displaythestrengthofelectron–holecoherencebetweenatomsAandBwhenanelectrontransits.Therefore,TDMvisualizesthechangesintheelectronicdensityduringphotoexcitationandfluorescenceemission.

ComputationalDetails

CalculationswereperformedusingtheGaussian09package,[22]unlessotherwisestated.DFTcalculationsusingthePBE0functionaltogetherwiththe6-31+G(d)basissetwerecarriedouttoopti-mizetheground-stategeometricalstructuresof1–4invacuum.ThegeometriesoftheS1stateinvacuumwerecalculatedbytime-dependentDFT(TD-DFT)atthePBE0/6-31+G(d)levelbasedontheoptimizedground-stategeometries.Frequencycalculationsfol-lowingtheoptimizationswereperformedtoensurethatrealminimawereobtained.AllthecalculationswerecarriedoutusingtheCssymmetry.Basedontheoptimizedmoleculargeometries,absorptionandemissionspectraweresystematicallyinvestigatedbytheTD-DFTmethodwithinthenonequilibriumpolarizablecon-tinuummodel(PCM)approach[23]simulatingthesolventeffects(CH2Cl2).Additionally,asystematiccomparisonofthespectralre-sultsobtainedfromequilibriumPCMandnonequilibriumPCMwasperformed(TableS11,SupportingInformation).Evidently,bothequilibriumandnonequilibriumPCMresultsreproducethevaria-tiontrendoftheexperimentalvalues.Theabsorptionandemissionspectraof1–4withinequilibriumPCMexhibitaslightredshift(ca.10nm)comparedwiththoseinnonequilibriumPCM.Importantly,theequilibriumandnonequilibriumPCMsproducethesamevaria-tionsforabsorptionandemissionspectra,aswellasStokesshifts.Thus,onlythespectraresultswithinthenonequilibriumPCMap-proachwerepresentedanddiscussedinthiswork.Togainfurtherinsightsintothebondingsituation,Wibergbondindex[24]calcula-tionsusingthenaturalbondorbital(NBO)approachwereem-ployed.Thenatureoftheexcitedstateswascharacterizedbycal-culatingtheTDMthroughcodeMultiwfn2.3.[25]

Acknowledgements

WegratefullyacknowledgefinancialsupportfromtheNSFC(20903020and21131001),973Program(2009CB623605),SRFfor

ChemPhysChem2012,13,3714–3722

󰀂2012Wiley-VCHVerlagGmbH&Co.KGaA,Weinheimwww.chemphyschem.org

3721

Z.-M.Suetal.

Yuan,C.Zhang,T.D.James,Chem.Sci.2012,3,1049–1061;j)J.-Y.Liu,H.-S.Yeung,W.Xu,X.Li,D.K.P.Ng,Org.Lett.2008,10,5421–5424.M.Brçring,R.Krüger,S.Link,C.Kleeberg,S.Kçhler,X.Xie,B.Ventura,L.Flamigni,Chem.Eur.J.2008,14,2976–2983.

Y.Chen,J.Zhao,H.Guo,L.Xie,J.Org.Chem.2012,77,2192–2206.

J.F.Araneda,W.E.Piers,B.Heyne,M.Parvez,R.McDonald,Angew.Chem.2011,123,12422–12425;Angew.Chem.Int.Ed.2011,50,12214–12217.

a)K.Rurack,M.Kollmannsberger,J.Daub,Angew.Chem.2001,113,396–399;Angew.Chem.Int.Ed.2001,40,385–387;b)K.Rurack,M.Kollmannsberger,J.Daub,NewJ.Chem.2001,25,289–292;c)W.Qin,T.Rohand,W.Dehaen,J.N.Clifford,K.Driesen,D.Beljonne,B.VanAver-beke,M.VanderAuweraer,N.Boens,J.Phys.Chem.A2007,111,8588–8597;d)W.Qin,M.Baruah,M.Sliwa,M.VanderAuweraer,W.M.DeBorggraeve,D.Beljonne,B.VanAverbeke,N.L.Boens,J.Phys.Chem.A2008,112,6104–6114;e)E.Deniz,G.C.Isbasar,O.A.Bozdemir,L.T.Yil-dirim,A.Siemiarczuk,E.U.Akkaya,Org.Lett.2008,10,3401–3403;f)S.Atilgan,Z.Ekmekci,A.L.Dogan,D.Guc,E.U.Akkaya,Chem.Commun.2006,4398–4400;g)S.Yin,V.Leen,S.V.Snick,N.Boens,W.Dehaen,Chem.Commun.2010,46,6329–6331;h)C.Jiao,L.Zhu,J.Wu,Chem.Eur.J.2011,17,6610–6614.

a)K.Umezawa,Y.Nakamura,H.Makino,D.Citterio,K.Suzuki,J.Am.Chem.Soc.2008,130,1550–1551;b)K.Umezawa,A.Matsui,Y.Naka-mura,D.Citterio,K.Suzuki,Chem.Eur.J.2009,15,1096–1106;c)X.Zhang,H.Yu,Y.Xiao,J.Org.Chem.2012,77,669–673;d)B.LeGuennic,O.Maury,D.Jacquemin,Phys.Chem.Chem.Phys.2012,14,157–164;e)S.G.Awuah,J.Polreis,V.Biradar,Y.You,Org.Lett.2011,13,3884–3887;f)N.Adarsh,R.R.Avirah,D.Ramaiah,Org.Lett.2010,12,5720–5723.

V.R.Thalladi,H.C.Weiss,D.Bläser,R.Boese,A.Nangia,G.R.Desiraju,J.Am.Chem.Soc.1998,120,8702–8710.

a)J.Autschbach,ChemPhysChem2009,10,1757–1760;b)A.Dreuw,M.Head-Gordon,Chem.Rev.2005,105,4009–4037.

a)T.LeBahers,C.Adamo,I.Ciofini,J.Chem.TheoryComput.2011,7,2498–2506;b)D.Jacquemin,T.L.Bahers,C.Adamo,I.Ciofini,Phys.Chem.Chem.Phys.2012,14,5383–5388.

a)J.P.Perdew,K.Burke,M.Ernzerhof,Phys.Rev.Lett.1996,77,3865–3868;b)J.P.Perdew,K.Burke,M.Ernzerhof,Phys.Rev.Lett.1997,78,1396–1396;c)C.Adamo,V.Barone,J.Chem.Phys.1999,110,6158–6170.

I.J.Arroyo,R.Hu,G.Merino,B.Z.Tang,E.PeÇa-Cabrera,J.Org.Chem.2009,74,5719–5722.

M.J.G.Peach,P.Benfield,T.Helgaker,D.J.Tozer,J.Chem.Phys.2008,128,044118.

Y.Shao,L.F.Molnar,Y.Jung,J.Kussmann,C.Ochsenfeld,S.T.Brown,A.T.B.Gilbert,L.V.Slipchenko,S.V.Levchenko,D.P.O’Neill,R.A.DiSta-sio,Jr.,R.C.Lochan,T.Wang,G.J.O.Beran,N.A.Besley,J.M.Herbert,C.YehLin,T.VanVoorhis,S.HungChien,A.Sodt,R.P.Steele,V.A.Ras-solov,P.E.Maslen,P.P.Korambath,R.D.Adamson,B.Austin,J.Baker,E.F.C.Byrd,H.Dachsel,R.J.Doerksen,A.Dreuw,B.D.Dunietz,A.D.Dutoi,T.R.Furlani,S.R.Gwaltney,A.Heyden,S.Hirata,C.-P.Hsu,G.Ked-ziora,R.Z.Khalliulin,P.Klunzinger,A.M.Lee,M.S.Lee,W.Liang,I.Lotan,N.Nair,B.Peters,E.I.Proynov,P.A.Pieniazek,Y.MinRhee,J.Ritchie,E.Rosta,C.D.Sherrill,A.C.Simmonett,J.E.Subotnik,H.L.Woodcock,III,W.Zhang,A.T.Bell,A.K.Chakraborty,D.M.Chipman,F.J.Keil,A.Warshel,W.J.Hehre,H.F.Schaefer,III,J.Kong,A.I.Krylov,P.M.W.Gill,M.Head-Gordon,Phys.Chem.Chem.Phys.2006,8,3172–3191.

a)S.Yin,Q.Peng,Z.Shuai,W.Fang,Y.H.Wang,Y.Luo,Phys.Rev.B2006,73,205409;b)M.C.Li,M.Hayashi,S.H.Lin,J.Phys.Chem.A2011,115,14531–14538.

F.H.Allen,O.Kennard,D.G.Watson,L.Brammer,A.G.Orpen,R.Taylor,J.Chem.Soc.PerkinTrans.21987,S1–S19.

Q.Peng,Y.Yi,Z.Shuai,J.Shao,J.Am.Chem.Soc.2007,129,9333–9339.

Gaussian09W,RevisionA.02,M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E.Scuseria,M.A.Robb,J.R.Cheeseman,G.Scalmani,V.Barone,B.Mennucci,G.A.Petersson,H.Nakatsuji,M.Caricato,X.Li,H.P.Hratch-ian,A.F.Izmaylov,J.Bloino,G.Zheng,J.L.Sonnenberg,M.Hada,M.Ehara,K.Toyota,R.Fukuda,J.Hasegawa,M.Ishida,T.Nakajima,Y.Honda,O.Kitao,H.Nakai,T.Vreven,J.A.Montgomery,Jr.,J.E.Peralta,F.Ogliaro,M.Bearpark,J.J.Heyd,E.Brothers,K.N.Kudin,V.N.Staroverov,R.Kobayashi,J.Normand,K.Raghavachari,A.Rendell,J.C.Burant,S.S.Iyengar,J.Tomasi,M.Cossi,N.Rega,J.M.Millam,M.Klene,J.E.Knox,J.B.Cross,V.Bakken,C.Adamo,J.Jaramillo,R.Gomperts,R.E.Strat-mann,O.Yazyev,A.J.Austin,R.Cammi,C.Pomelli,J.W.Ochterski,R.L.Martin,K.Morokuma,V.G.Zakrzewski,G.A.Voth,P.Salvador,J.J.Dan-nenberg,S.Dapprich,A.D.Daniels,O.Farkas,J.B.Foresman,J.V.Ortiz,J.Cioslowski,D.J.Fox,Gaussian,Inc.,WallingfordCT,2009.

J.Tomasi,B.Mennucci,R.Cammi,Chem.Rev.2005,105,2999–3094.a)K.B.Wiberg,J.J.Wendoloski,J.Am.Chem.Soc.1982,104,5679–5686;b)K.B.Wiberg,Tetrahedron1968,24,1083–1096.

a)Multiwfn,Version2.3,AMultifunctionalWavefunctionAnalyzer,T.Lu,seehttp://multiwfn.codeplex.com;b)T.Lu,F.Chen,J.Comput.Chem.2012,33,580–592.

[7][8][9]

[10]

[19]

[20][21][22]

[11]

[12][13][14]

[23][24][25]

[15]

[16][17][18]

Received:May10,2012Revised:July16,2012

PublishedonlineonAugust16,2012

3722

www.chemphyschem.org󰀂2012Wiley-VCHVerlagGmbH&Co.KGaA,WeinheimChemPhysChem2012,13,3714–3722

因篇幅问题不能全部显示,请点此查看更多更全内容