数据结构优化一、选择格式的数据类型数据类型的选择,重点在于合适二字,如何确定选择的数据类型是否合适?1、使用可以存下你的数据的最小的数据类型。2、使用简单的数据类型,Int要比varchar类型在mysql处理上简单;3、尽可能的使用not null定义字段;4、尽量少使用text类型,非用不可时最好考虑分表。//使用int类型存储时间类型from_unixtime(),unix_timestamp()时间戳转换//使用bigint存储ip地址inet_aton(‘192.168.132.1‘),inet_nton()二、表的范式化优化,反范式化优化三、表的垂直拆分:所谓垂直拆分,就是把原来一个有很多列的表拆分成多个表,这解决了表的宽度问题;拆分的原则:1、将不常用的字段单独放在一个表中。2、将大字段单独放在一个表中。3.将经常一起使用的字段放在一起。四、表的水平拆分表的水平拆分是为了解决单表的数据量过大的问题,水平拆分的表结构是一致的。
mysql数据库优化 数据库结构优化
标签:数据库优化 mysql ip地址 null 如何
小编还为您整理了以下内容,可能对您也有帮助:
怎么进行mysql数据库优化?
有八个方面可以对mysql进行优化:
1、选取最适用的字段属性
MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的性能,我们可以将表中字段的宽度设得尽可能小。
2. 使用连接(JOIN)来代替子查询(Sub-Queries)
MySQL从4.1开始支持SQL的子查询。这个技术可以使用SELECT语句来创建一个单列的查询结果,然后把这个结果作为过滤条件用在另一个查询中。
3、使用联合(UNION)来代替手动创建的临时表
MySQL从4.0的版本开始支持union查询,它可以把需要使用临时表的两条或更多的select查询合并的一个查询中。在客户端的查询会话结束的时候,临时表会被自动删除,从而保证数据库整齐、高效。
4、事务
尽管我们可以使用子查询(Sub-Queries)、连接(JOIN)和联合(UNION)来创建各种各样的查询,但不是所有的数据库操作都可以只用一条或少数几条SQL语句就可以完成的。更多的时候是需要用到一系列的语句来完成某种工作。但是在这种情况下,当这个语句块中的某一条语句运行出错的时候,整个语句块的操作就会变得不确定起来。设想一下,要把某个数据同时插入两个相关联的表中,可能会出现这样的情况:第一个表中成功更新后,数据库突然出现意外状况,造成第二个表中的操作没有完成,这样,就会造成数据的不完整,甚至会破坏数据库中的数据。要避免这种情况,就应该使用事务,它的作用是:要么语句块中每条语句都操作成功,要么都失败
5、锁定表
尽管事务是维护数据库完整性的一个非常好的方法,但却因为它的独占性,有时会影响数据库的性能,尤其是在很大的应用系统中。由于在事务执行的过程中,数据库将会被锁定,因此其它的用户请求只能暂时等待直到该事务结束。其实,有些情况下我们可以通过锁定表的方法来获得更好的性能。
6、使用外键
锁定表的方法可以维护数据的完整性,但是它却不能保证数据的关联性。这个时候我们就可以使用外键。
7、使用索引
索引是提高数据库性能的常用方法,它可以令数据库服务器以比没有索引快得多的速度检索特定的行,尤其是在查询语句当中包含有MAX(),MIN()和ORDERBY这些命令的时候,性能提高更为明显。
8、优化的查询语句
绝大多数情况下,使用索引可以提高查询的速度,但如果SQL语句使用不恰当的话,索引将无法发挥它应有的作用。
怎么进行mysql数据库优化?
有八个方面可以对mysql进行优化:
1、选取最适用的字段属性
MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的性能,我们可以将表中字段的宽度设得尽可能小。
2. 使用连接(JOIN)来代替子查询(Sub-Queries)
MySQL从4.1开始支持SQL的子查询。这个技术可以使用SELECT语句来创建一个单列的查询结果,然后把这个结果作为过滤条件用在另一个查询中。
3、使用联合(UNION)来代替手动创建的临时表
MySQL从4.0的版本开始支持union查询,它可以把需要使用临时表的两条或更多的select查询合并的一个查询中。在客户端的查询会话结束的时候,临时表会被自动删除,从而保证数据库整齐、高效。
4、事务
尽管我们可以使用子查询(Sub-Queries)、连接(JOIN)和联合(UNION)来创建各种各样的查询,但不是所有的数据库操作都可以只用一条或少数几条SQL语句就可以完成的。更多的时候是需要用到一系列的语句来完成某种工作。但是在这种情况下,当这个语句块中的某一条语句运行出错的时候,整个语句块的操作就会变得不确定起来。设想一下,要把某个数据同时插入两个相关联的表中,可能会出现这样的情况:第一个表中成功更新后,数据库突然出现意外状况,造成第二个表中的操作没有完成,这样,就会造成数据的不完整,甚至会破坏数据库中的数据。要避免这种情况,就应该使用事务,它的作用是:要么语句块中每条语句都操作成功,要么都失败
5、锁定表
尽管事务是维护数据库完整性的一个非常好的方法,但却因为它的独占性,有时会影响数据库的性能,尤其是在很大的应用系统中。由于在事务执行的过程中,数据库将会被锁定,因此其它的用户请求只能暂时等待直到该事务结束。其实,有些情况下我们可以通过锁定表的方法来获得更好的性能。
6、使用外键
锁定表的方法可以维护数据的完整性,但是它却不能保证数据的关联性。这个时候我们就可以使用外键。
7、使用索引
索引是提高数据库性能的常用方法,它可以令数据库服务器以比没有索引快得多的速度检索特定的行,尤其是在查询语句当中包含有MAX(),MIN()和ORDERBY这些命令的时候,性能提高更为明显。
8、优化的查询语句
绝大多数情况下,使用索引可以提高查询的速度,但如果SQL语句使用不恰当的话,索引将无法发挥它应有的作用。
mysql数据库如何优化,优化了哪些功能
mysql的优化大的有两方面:
1、配置优化
配置的优化其实包含两个方面的:操作系统内核的优化和mysql配置文件的优化
1)系统内核的优化对专用的mysql服务器来说,无非是内存实用、连接数、超时处理、TCP处理等方面的优化,根据自己的硬件配置来进行优化,这里不多讲;
2)mysql配置的优化,一般来说包含:IO处理的常用参数、最大连接数设置、缓存使用参数的设置、慢日志的参数的设置、innodb相关参数的设置等,如果有主从关系在设置主从同步的相关参数即可,网上的相关配置文件很多,大同小异,常用的设置大多修改这些差不多就够用了。
2、sql语句的优化
1、 尽量稍作计算
Mysql的作用是用来存取数据的,不是做计算的,做计算的话可以用其他方法去实现,mysql做计算是很耗资源的。
2.尽量少 join
MySQL 的优势在于简单,但这在某些方面其实也是其劣势。MySQL 优化器效率高,但是由于其统计信息的量有限,优化器工作过程出现偏差的可能性也就更多。对于复杂的多表 Join,一方面由于其优化器受限,再者在 Join 这方面所下的功夫还不够,所以性能表现离 Oracle 等关系型数据库前辈还是有一定距离。但如果是简单的单表查询,这一差距就会极小甚至在有些场景下要优于这些数据库前辈。
3.尽量少排序
排序操作会消耗较多的 CPU 资源,所以减少排序可以在缓存命中率高等 IO 能力足够的场景下会较大影响 SQL的响应时间。
对于MySQL来说,减少排序有多种办法,比如:
通过利用索引来排序的方式进行优化
减少参与排序的记录条数
非必要不对数据进行排序
mysql数据库如何优化,优化了哪些功能
mysql的优化大的有两方面:
1、配置优化
配置的优化其实包含两个方面的:操作系统内核的优化和mysql配置文件的优化
1)系统内核的优化对专用的mysql服务器来说,无非是内存实用、连接数、超时处理、TCP处理等方面的优化,根据自己的硬件配置来进行优化,这里不多讲;
2)mysql配置的优化,一般来说包含:IO处理的常用参数、最大连接数设置、缓存使用参数的设置、慢日志的参数的设置、innodb相关参数的设置等,如果有主从关系在设置主从同步的相关参数即可,网上的相关配置文件很多,大同小异,常用的设置大多修改这些差不多就够用了。
2、sql语句的优化
1、 尽量稍作计算
Mysql的作用是用来存取数据的,不是做计算的,做计算的话可以用其他方法去实现,mysql做计算是很耗资源的。
2.尽量少 join
MySQL 的优势在于简单,但这在某些方面其实也是其劣势。MySQL 优化器效率高,但是由于其统计信息的量有限,优化器工作过程出现偏差的可能性也就更多。对于复杂的多表 Join,一方面由于其优化器受限,再者在 Join 这方面所下的功夫还不够,所以性能表现离 Oracle 等关系型数据库前辈还是有一定距离。但如果是简单的单表查询,这一差距就会极小甚至在有些场景下要优于这些数据库前辈。
3.尽量少排序
排序操作会消耗较多的 CPU 资源,所以减少排序可以在缓存命中率高等 IO 能力足够的场景下会较大影响 SQL的响应时间。
对于MySQL来说,减少排序有多种办法,比如:
通过利用索引来排序的方式进行优化
减少参与排序的记录条数
非必要不对数据进行排序
mysql数据库的优化方法?
我们都知道,服务器数据库的开发一般都是通过java或者是PHP语言来编程实现的,而为了提高我们数据库的运行速度和效率,数据库优化也成为了我们每日的工作重点,今天,昌平IT培训就一起来了解一下mysql服务器数据库的优化方法。
为什么要了解索引
真实案例
案例一:大学有段时间学习爬虫,爬取了知乎300w用户答题数据,存储到mysql数据中。那时不了解索引,一条简单的“根据用户名搜索全部回答的sql“需要执行半分钟左右,完全满足不了正常的使用。
案例二:近线上应用的数据库频频出现多条慢sql风险提示,而工作以来,对数据库优化方面所知甚少。例如一个用户数据页面需要执行很多次数据库查询,性能很慢,通过增加超时时间勉强可以访问,但是性能上需要优化。
索引的优点
合适的索引,可以大大减小mysql服务器扫描的数据量,避免内存排序和临时表,提高应用程序的查询性能。
索引的类型
mysql数据中有多种索引类型,primarykey,unique,normal,但底层存储的数据结构都是BTREE;有些存储引擎还提供hash索引,全文索引。
BTREE是常见的优化要面对的索引结构,都是基于BTREE的讨论。
B-TREE
查询数据简单暴力的方式是遍历所有记录;如果数据不重复,就可以通过组织成一颗排序二叉树,通过二分查找算法来查询,大大提高查询性能。而BTREE是一种更强大的排序树,支持多个分支,高度更低,数据的插入、删除、更新更快。
现代数据库的索引文件和文件系统的文件块都被组织成BTREE。
btree的每个节点都包含有key,data和只想子节点指针。
btree有度的概念d>=1。假设btree的度为d,则每个内部节点可以有n=[d+1,2d+1)个key,n+1个子节点指针。树的大高度为h=Logb[(N+1)/2]。
索引和文件系统中,B-TREE的节点常设计成接近一个内存页大小(也是磁盘扇区大小),且树的度非常大。这样磁盘I/O的次数,就等于树的高度h。假设b=100,一百万个节点的树,h将只有3层。即,只有3次磁盘I/O就可以查找完毕,性能非常高。
索引查询
建立索引后,合适的查询语句才能大发挥索引的优势。
另外,由于查询优化器可以解析客户端的sql语句,会调整sql的查询语句的条件顺序去匹配合适的索引。
几种MySQL数据库的优化方案
最近在找工作,面试时很多企业会问到关于数据库优化的问题,今天在这里总结一下数据库优化问题,以MySQL数据库为例进行讲解。
为什么要优化:
随着实际项目的启动,数据库经过一段时间的运行,最初的数据库设置,会与实际数据库运行性能会有一些差异,这时我们 就需要做一个优化调整。
数据库优化这个课题较大,可分为四大类:
》主机性能
》内存使用性能
》网络传输性能
》SQL语句执行性能【软件工程师】
下面列出一些数据库SQL优化方案:
(01)选择最有效率的表名顺序(笔试常考)
数据库的解析器按照从右到左的顺序处理FROM子句中的表名,
FROM子句中写在最后的表将被最先处理,
在FROM子句中包含多个表的情况下,你必须选择记录条数最少的表放在最后,
如果有3个以上的表连接查询,那就需要选择那个被其他表所引用的表放在最后。
例如:查询员工的编号,姓名,工资,工资等级,部门名
select emp.empno,emp.ename,emp.sal,salgrade.grade,dept.dname
from salgrade,dept,emp
where (emp.deptno = dept.deptno) and (emp.sal between salgrade.losal and salgrade.hisal)
1)如果三个表是完全无关系的话,将记录和列名最少的表,写在最后,然后依次类推
2)如果三个表是有关系的话,将引用最多的表,放在最后,然后依次类推
(02)WHERE子句中的连接顺序(笔试常考)
数据库采用自右而左的顺序解析WHERE子句,根据这个原理,表之间的连接必须写在其他WHERE条件之左,
那些可以过滤掉最大数量记录的条件必须写在WHERE子句的之右。
例如:查询员工的编号,姓名,工资,部门名
select emp.empno,emp.ename,emp.sal,dept.dname
from emp,dept
where (emp.deptno = dept.deptno) and (emp.sal > 1500)
(03)SELECT子句中避免使用*号
数据库在解析的过程中,会将*依次转换成所有的列名,这个工作是通过查询数据字典完成的,这意味着将耗费更多的时间
select empno,ename from emp;
(04)删除表中的所有记录,用TRUNCATE替代DELETE
(05)尽量多使用COMMIT
因为COMMIT会释放回滚点
(06)用WHERE子句替换HAVING子句
WHERE先执行,HAVING后执行
(07)多使用内部函数提高SQL效率
(08)使用表的别名
salgrade s
(09)使用列的别名
ename e
几种MySQL数据库的优化方案
最近在找工作,面试时很多企业会问到关于数据库优化的问题,今天在这里总结一下数据库优化问题,以MySQL数据库为例进行讲解。
为什么要优化:
随着实际项目的启动,数据库经过一段时间的运行,最初的数据库设置,会与实际数据库运行性能会有一些差异,这时我们 就需要做一个优化调整。
数据库优化这个课题较大,可分为四大类:
》主机性能
》内存使用性能
》网络传输性能
》SQL语句执行性能【软件工程师】
下面列出一些数据库SQL优化方案:
(01)选择最有效率的表名顺序(笔试常考)
数据库的解析器按照从右到左的顺序处理FROM子句中的表名,
FROM子句中写在最后的表将被最先处理,
在FROM子句中包含多个表的情况下,你必须选择记录条数最少的表放在最后,
如果有3个以上的表连接查询,那就需要选择那个被其他表所引用的表放在最后。
例如:查询员工的编号,姓名,工资,工资等级,部门名
select emp.empno,emp.ename,emp.sal,salgrade.grade,dept.dname
from salgrade,dept,emp
where (emp.deptno = dept.deptno) and (emp.sal between salgrade.losal and salgrade.hisal)
1)如果三个表是完全无关系的话,将记录和列名最少的表,写在最后,然后依次类推
2)如果三个表是有关系的话,将引用最多的表,放在最后,然后依次类推
(02)WHERE子句中的连接顺序(笔试常考)
数据库采用自右而左的顺序解析WHERE子句,根据这个原理,表之间的连接必须写在其他WHERE条件之左,
那些可以过滤掉最大数量记录的条件必须写在WHERE子句的之右。
例如:查询员工的编号,姓名,工资,部门名
select emp.empno,emp.ename,emp.sal,dept.dname
from emp,dept
where (emp.deptno = dept.deptno) and (emp.sal > 1500)
(03)SELECT子句中避免使用*号
数据库在解析的过程中,会将*依次转换成所有的列名,这个工作是通过查询数据字典完成的,这意味着将耗费更多的时间
select empno,ename from emp;
(04)删除表中的所有记录,用TRUNCATE替代DELETE
(05)尽量多使用COMMIT
因为COMMIT会释放回滚点
(06)用WHERE子句替换HAVING子句
WHERE先执行,HAVING后执行
(07)多使用内部函数提高SQL效率
(08)使用表的别名
salgrade s
(09)使用列的别名
ename e
超详细MySQL数据库优化
数据库优化一方面是找出系统的瓶颈,提高MySQL数据库的整体性能,而另一方面需要合理的结构设计和参数调整,以提高用户的相应速度,同时还要尽可能的节约系统资源,以便让系统提供更大的负荷.
1. 优化一览图
2. 优化
笔者将优化分为了两大类,软优化和硬优化,软优化一般是操作数据库即可,而硬优化则是操作服务器硬件及参数设置.
2.1 软优化
2.1.1 查询语句优化
1.首先我们可以用EXPLAIN或DESCRIBE(简写:DESC)命令分析一条查询语句的执行信息.
2.例:
显示:
其中会显示索引和查询数据读取数据条数等信息.
2.1.2 优化子查询
在MySQL中,尽量使用JOIN来代替子查询.因为子查询需要嵌套查询,嵌套查询时会建立一张临时表,临时表的建立和删除都会有较大的系统开销,而连接查询不会创建临时表,因此效率比嵌套子查询高.
2.1.3 使用索引
索引是提高数据库查询速度最重要的方法之一,关于索引可以参高笔者<MySQL数据库索引>一文,介绍比较详细,此处记录使用索引的三大注意事项:
2.1.4 分解表
对于字段较多的表,如果某些字段使用频率较低,此时应当,将其分离出来从而形成新的表,
2.1.5 中间表
对于将大量连接查询的表可以创建中间表,从而减少在查询时造成的连接耗时.
2.1.6 增加冗余字段
类似于创建中间表,增加冗余也是为了减少连接查询.
2.1.7 分析表,,检查表,优化表
分析表主要是分析表中关键字的分布,检查表主要是检查表中是否存在错误,优化表主要是消除删除或更新造成的表空间浪费.
1. 分析表: 使用 ANALYZE 关键字,如ANALYZE TABLE user;
2. 检查表: 使用 CHECK关键字,如CHECK TABLE user [option]
option 只对MyISAM有效,共五个参数值:
3. 优化表:使用OPTIMIZE关键字,如OPTIMIZE [LOCAL|NO_WRITE_TO_BINLOG] TABLE user;
LOCAL|NO_WRITE_TO_BINLOG都是表示不写入日志.,优化表只对VARCHAR,BLOB和TEXT有效,通过OPTIMIZE TABLE语句可以消除文件碎片,在执行过程中会加上只读锁.
2.2 硬优化
2.2.1 硬件三件套
1.配置多核心和频率高的cpu,多核心可以执行多个线程.
2.配置大内存,提高内存,即可提高缓存区容量,因此能减少磁盘I/O时间,从而提高响应速度.
3.配置高速磁盘或合理分布磁盘:高速磁盘提高I/O,分布磁盘能提高并行操作的能力.
2.2.2 优化数据库参数
优化数据库参数可以提高资源利用率,从而提高MySQL服务器性能.MySQL服务的配置参数都在my.cnf或my.ini,下面列出性能影响较大的几个参数.
2.2.3 分库分表
因为数据库压力过大,首先一个问题就是高峰期系统性能可能会降低,因为数据库负载过高对性能会有影响。另外一个,压力过大把你的数据库给搞挂了怎么办?所以此时你必须得对系统做分库分表 + 读写分离,也就是把一个库拆分为多个库,部署在多个数据库服务上,这时作为主库承载写入请求。然后每个主库都挂载至少一个从库,由从库来承载读请求。
2.2.4 缓存集群
如果用户量越来越大,此时你可以不停的加机器,比如说系统层面不停加机器,就可以承载更高的并发请求。然后数据库层面如果写入并发越来越高,就扩容加数据库服务器,通过分库分表是可以支持扩容机器的,如果数据库层面的读并发越来越高,就扩容加更多的从库。但是这里有一个很大的问题:数据库其实本身不是用来承载高并发请求的,所以通常来说,数据库单机每秒承载的并发就在几千的数量级,而且数据库使用的机器都是比较高配置,比较昂贵的机器,成本很高。如果你就是简单的不停的加机器,其实是不对的。所以在高并发架构里通常都有缓存这个环节,缓存系统的设计就是为了承载高并发而生。所以单机承载的并发量都在每秒几万,甚至每秒数十万,对高并发的承载能力比数据库系统要高出一到两个数量级。所以你完全可以根据系统的业务特性,对那种写少读多的请求,引入缓存集群。具体来说,就是在写数据库的时候同时写一份数据到缓存集群里,然后用缓存集群来承载大部分的读请求。这样的话,通过缓存集群,就可以用更少的机器资源承载更高的并发。
一个完整而复杂的高并发系统架构中,一定会包含:各种复杂的自研基础架构系统。各种精妙的架构设计.因此一篇小文顶多具有抛砖引玉的效果,但是数据库优化的思想差不多就这些了.
如何优化Mysql数据库
1、添加主键ID
2、尽量避免使用select * form table
3、创建索引
对于查询占主要的应用来说,索引显得尤为重要。很多时候性能问题很简单的就是因为我们忘了添加索引而造成的,或者说没有添加更为有效的索引导致。如果不加索引的话,那么查找任何哪怕只是
一条特定的数据都会进行一次全表扫描,如果一张表的数据量很大而符合条件的结果又很少,那么不加索引会引起致命的性能下降。但是也不是什么情况都非得建索引不可,比如性别可能就只有两个
值,建索引不仅没什么优势,还会影响到更新速度,这被称为过度索引。
4、复合索引
比如有一条语句是这样的:select * from users where area=‘beijing‘ and age=22;如果我们是在area和age上分别创建单个索引的话,由于mysql查询每次只能使用一个索引,所以虽然这样已
经相对不做索引时全表扫描提高了很多效率,但是如果在area、age两列上创建复合索引的话将带来更高的效率。如果我们创建了(area,
age,
salary)的复合索引,那么其实相当于创建了
(area,age,salary)、(area,age)、(area)三个索引,这被称为最佳左前缀特性。因此我们在创建复合索引时应该将最常用作条件的列放在最左边,依次递减。
4、索引不会包含有NULL值的列
只要列中包含有NULL值都将不会被包含在索引中,复合索引中只要有一列含有NULL值,那么这一列对于此复合索引就是无效的。所以我们在数据库设计时不要让字段的默认值为NULL。
5、使用短索引
对串列进行索引,如果可能应该指定一个前缀长度。例如,如果有一个CHAR(255)的 列,如果在前10 个或20 个字符内,多数值是惟一的,那么就不要对整个列进行索引。短索引不仅可以提高查询
速度而且可以节省磁盘空间和I/O操作。
6、排序的索引问题
mysql查询只使用一个索引,因此如果where子句中已经使用了索引的话,那么order by中的列是不会使用索引的。因此数据库默认排序可以符合要求的情况下不要使用排序操作;尽量不要包含多个
列的排序,如果需要最好给这些列创建复合索引。
7、like语句操作
一般情况下不鼓励使用like操作,如果非使用不可,如何使用也是一个问题。like “%aaa%” 不会使用索引而like “aaa%”可以使用索引。
8、不要在列上进行运算
select * from users where YEAR(adddate)<2007;将在每个行上进行运算,这将导致索引失效而进行全表扫描,因此我们可以改成select * from users where adddate<‘2007-01-01‘;
9、不使用NOT IN和<>操作
NOT IN和<>操作都不会使用索引将进行全表扫描。NOT IN可以NOT EXISTS代替,id<>3则可使用id>3 or id<3来代替。
10、优化mysql查询缓存
在MySQL服务器上进行查询,可以启用高速查询缓存。让数据库引擎在后台悄悄的处理是提高性能的最有效方法之一。当同一个查询被执行多次时,如果结果是从缓存中提取,那是相当快的。
但主要的问题是,它是那么容易被隐藏起来以至于我们大多数程序员会忽略它。在有些处理任务中,我们实际上是可以阻止查询缓存工作的。
1. // query cache does NOT work
2. $r = mysql_query("SELECT username FROM user WHERE signup_date >= CURDATE()");
3.
4. // query cache works!
5. $today = date("Y-m-d");
6. $r = mysql_query("SELECT username FROM user WHERE signup_date >= ‘$today‘");
7.
8. // query cache does NOT work
9. $r = mysql_query("SELECT username FROM user WHERE signup_date >= CURDATE()");
10.
11. // query cache works!
12. $today = date("Y-m-d");
13. $r = mysql_query("SELECT username FROM user WHERE signup_date >= ‘$today‘");
11. 利用LIMIT 1取得唯一行
有时,当你要查询一张表是,你知道自己只需要看一行。你可能会去的一条十分独特的记录,或者只是刚好检查了任何存在的记录数,他们都满足了你的WHERE子句。
在这种情况下,增加一个LIMIT 1会令你的查询更加有效。这样数据库引擎发现只有1后将停止扫描,而不是去扫描整个表或索引。
1. // do I have any users from Alabama?
2. // what NOT to do:
3. $r = mysql_query("SELECT * FROM user WHERE state = ‘Alabama‘");
4. if (mysql_num_rows($r) > 0) {
5. // ...
6. }
7. // much better:
8. $r = mysql_query("SELECT 1 FROM user WHERE state = ‘Alabama‘ LIMIT 1");
9. if (mysql_num_rows($r) > 0) {
10. // ...
11. }
12. 不要使用BY RAND()命令
这是一个令很多新手程序员会掉进去的陷阱。你可能不知不觉中制造了一个可怕的平静。这个陷阱在你是用BY RAND()命令时就开始创建了。
如果您真的需要随机显示你的结果,有很多更好的途径去实现。诚然这需要写更多的代码,但是能避免性能瓶颈的出现。问题在于,MySQL可能会为表中每一个的行执行BY RAND()命令(这会消耗处理器的处理能力),然后给你仅仅返回一行。
1. // what NOT to do:
2. $r = mysql_query("SELECT username FROM user ORDER BY RAND() LIMIT 1");
3. // much better:
4. $r = mysql_query("SELECT count(*) FROM user");
5. $d = mysql_fetch_row($r);
6. $rand = mt_rand(0,$d[0] - 1);
7.
8. $r = mysql_query("SELECT username FROM user LIMIT $rand, 1");
如何优化Mysql数据库
标签:程序长度创建避免磁盘空间高性能form失效查询缓存